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�e accurate assessment of bone age (BA) is crucial for assessing children’s growth and developmental progress, 
particularly when therapies or orthopedic interventions are considered1. BA can be estimated by examining the 
ossification centers in a child’s skeleton, particularly in the hands, wrists, and knees1. �ese centers reflect the 
process of bone development, where cartilage gradually ossifies and epiphyseal (growth) plates eventually fuse 
with the bone sha�s as the child matures1. Among the assessed regions, the hand and wrist provide a stronger 
correlation with overall growth and the onset of puberty compared to the knee. �erefore, BA estimation using 
hand X-rays is especially effective for detecting delayed or advanced growth and is widely used as a standard 
diagnostic and monitoring method1.
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Traditional methods for BA assessment, such as the Greulich-Pyle (GP2) and Tanner-Whitehouse (TW3) 
methods, rely on experienced clinicians’ manual interpretation of hand radiographs. However, this process is 
labor-intensive, subjective, and suffers from intra- and inter-rater variability, leading to inconsistencies in patient 
care4,5.

In the past decade, Artificial Intelligence (AI) techniques have shown great potential for the automation of 
tasks and improvement of the diagnostics processes across all medical fields6 including pediatric radiology7 and 
orthopedics8. Various automated approaches have been introduced for BA assessment9–13 and have already been 
adopted in the clinical routine, especially in high-income countries14–18.

However, population bias is a critical issue in the development, validation, and application of AI in clinical 
settings19–21. Various studies have shown differences in the sex-specific growth patterns of children from different 
ancestries, which can influence automated BA assessment22–26. �us, applying automated BA assessment 
methods requires careful validation and, potentially, calibration in the respective target population.

Several previous works explored the application of existing BA tools to populations (e.g. Turkish, Arab, and 
Korean) underrepresented or not included in the training phase of the existing BA assessment AI tools15,17,27–29. 
Some confirmed the suitability allowing for the application of these tools to the respective patients15 while some 
works observed a deterioration of accuracy in other populations17 which could hamper their applicability.

However, testing for and adapting automated BA methods to populations not included in their training 
requires sufficiently large cohorts with manual reference ratings. �erefore, BA tools addressing smaller 
populations can be unattractive, especially for commercial tools that generally prefer to target larger populations 
and middle to high-income countries.

In this work, we aim to address the lack of automated BA assessment for the Georgian population. To our 
knowledge, no automated BA tool has been tested on a Georgian population. Deeplasia is a state-of-the-art 
open-source BA assessment tool5 which was trained using the 2017 pediatric BA challenge of the Radiological 
Society of North America (RSNA) collected from two US hospitals11,12. It was shown to generalize to four large 
ethnicities within the US and German children, including those with skeletal dysplasias. Moreover, Deeplasia 
showed high test-retest precision and, thus, suitability for longitudinal applications5. Here, we calibrated and 
tested Deeplasia for BA assessment of children and adolescents living in Georgia by assembling a large cohort 
(n = 381) of Georgian children on which seven local clinicians conducted reference BA grading. We name this 
the Georgian Bone Age Dataset (GBAD). Two example hand X-rays from this dataset are shown in Fig. 1.

To overcome the systematic over- or underestimation of BA observed in previous studies using other AI methods 
on generalization across populations, we created a new version of Deeplasia, named Deeplasia-GE, which is 
aligned with reference ratings provided by local clinicians and, thus, calibrated to the Georgian population. We 
hereby fit simple sex-specific linear regression models using a held-out training set (63 males, 58 females, Fig. 2) 
without retraining Deeplasia’s core deep-learning model.

�e resulting regression parameters for females were estimated as slope = 1.032 (95% confidence interval, CI: 
[0.990, 1.073]) and intercept = -6.532 months (95% CI: [-11.512, 1.551]), while for males, the slope was 1.040 
(95% CI: [0.999, 1.081]) and the intercept was − 9.860 months (95% CI: [-15.62, -4.10]).

Fig. 1. Example hand X-rays in the Georgian Bone Age Dataset. Le�: A girl with chronological age of 117 
months, reference bone age of 138 months, and Deeplasia-GE bone age of 137 months. Right: A boy with 
chronological age of 213 months, reference bone age of 214 months, and Deeplasia-GE bone age of 216 months.
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We then compared Deeplasia (uncalibrated) and Deeplasia-GE (calibrated) to the consensus manual 
reference rating in the independent test set (126 females, 134 males, Fig. 2) to verify the generalizability of the 
learned calibration and to estimate the expected real-world performance for Georgian children with respect to 
local clinicians. �e effect of calibration is visualized in the Bland-Altman plots in Fig. 3, whereas the numeric 
accuracy metrics are provided in Table 1. We see that the calibration reduces the assessed BA in both sexes, with 
a stronger correction for boys and a decreasing effect of the calibration with increasing age.

For the uncalibrated version of Deeplasia, the mean absolute difference (MAD) was 6.57 months, the root 
mean squared error (RSME) was 8.76 months (95% CI : [8.06, 9.58]), and the 1-year accuracy was 87.7%. �us, 
Deeplasia’s accuracy is reduced compared to previous results on other ethnicities, even though the study on 
Georgian children had a higher number of reference raters, which should result in a more reliable reference 
rating and, thus, higher assessed performance. When analyzing the calibration (Fig. 3), we observed that the 
default version of Deeplasia, on average, overestimates the BAs in the assessed Georgian cohort with a signed 
mean difference (SMD) of 2.85 (95% CI : [1.68, 4.01]) months and 5.35 (95% CI : [3.90, 6.81]) for female and 
male patients, respectively. Nevertheless, Deeplasia’s MAD and RMSE are lower than the average inter-rater 
discrepancy (Table  1), whereby Deeplasia’s BA prediction was more accurate than five out of seven raters 
(Table 2). �e intraclass correlation (ICC) between Deeplasia and the consensus manual BA was 0.9930 (95% 
CI: [0.99, 1.00]).

�e calibrated version, i.e., Deeplasia-GE, reduced the MAD to 5.69 months, RMSE to 7.37 months 
(95% CI: [6.79, 8.06]), and improved the 1-year accuracy to 88.4%. �e calibration effectively overcomes BA 
overestimation in the Georgian population, almost nullifying the SMD to -0.03 (95% CI: [-1.18, 1.11]) months 
and 0.58 (95% CI: [-0.81, 1.97]) months for girls and boys, respectively. �is finding validates that the learned 
regression generalizes to the test set.

Fig. 3. Bland-Altman plots showing the agreement of the average of seven manual bone age ratings in the 
test set (n=260) with Deeplasia (uncalibrated version, le�) and Deeplasia-GE (calibrated version, right). �e 
dotted and dashed lines indicate the average (µ, months) difference with the 95% confidence interval (CI, 
µ ± 1.96σ ). Note that 92.3% and 93.9% of cases fall within the CI.

 

Fig. 2. Age distribution in the training (right) and test (le�) sets for males and females.
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�e Bland-Altman analysis (Fig. 3) further confirmed the improved agreement of Deeplasia-GE with the 
ensemble of reference raters. Consequently, Deeplasia-GE is more accurate than all 7 individual raters (Table 2), 
and the ICC improved to 0.9939 (95% CI: [0.99, 1.00]).

To estimate the robustness of the conducted regression correction, we additionally bootstrapped simulated 
n = 1000 alternative train-test partitions. We present the resulting alternative calibration parameters and their 
effects in Fig.  4. Independent of the dataset partitioning, the conducted calibration falls within the 95% CI 

Fig. 4. Bootstrap re-partitioning (n = 1000) into calibration (⅓) and test (⅔) sets and its effect. Le�: the 
distribution of sex-specific regression parameters (slope and intercept) obtained from the calibration sets and 
the resulting mean absolute difference (MAD) and root mean squared error (RMSE) in the test sets. Right: the 
resulting corrections (i.e. difference between Deeplasia and Deeplasia-GE) as median and bootstrapped 95% 
CI. �e solid lines indicate the correction derived from the selected test set.

 

MAD RMSE

le� out rater manual Deeplasia Deeplasia-GE manual Deeplasia Deeplasia-GE

I 6.4 7.0 6.0 8.4 [7.8, 9.2] 9.2 [8.5, 10.1] 7.8 [7.2, 8.5]

II 7.3 7.0 6.1 9.5 [8.7, 10.4] 9.2 [8.5, 10.1] 7.9 [7.3, 8.6]

III 9.7 6.6 5.6 12.7 [11.7, 13.9] 8.7 [8.0, 9.5] 7.3 [6.7, 8.0]

IV 8.6 6.3 5.4 11.2 [10.3, 12.2] 8.5 [7.8, 9.3] 7.1 [6.5, 7.8]

V 6.7 6.8 5.8 8.9 [8.2, 9.7] 9.0 [8.3, 9.8] 7.4 [6.9, 8.1]

VI 7.4 6.5 5.8 9.8 [9.0, 10.7] 8.6 [7.9, 9.4] 7.4 [6.8, 8.1]

VII 9.3 7.4 6.6 12.0 [11.1, 13.1] 9.8 [9.1, 10.8] 8.4 [7.7, 9.2]

Table 2. Performance of individual raters. �e performance of Deeplasia and Deeplasia-GE is compared 
against each of the seven individual raters to the consensus bone ages established by the remaining six raters. 
Metrics where the automatic bone age assessment is more accurate than the manual assessment are marked in 
bold.

 

Dataset No. Ref. Ratings n

Deeplasia (months)
Inter-rater 
(months)

MAD RMSE MAD RMSE

Georgian 7 260 6.6 (base) 8.8 ([8.1, 9.6]) (base)
7.9 10.6

Georgian 7 260 5.7 (calibrated) 7.4 ([6.8, 8.1]) (calibrated)

RSNA11 6 200 3.9 5.1 (4.7, 5.7]) 4.8–7.0b -

DHA23 2 1383 5.8 7.7 ([7.4, 8.0]) 4.4 7.0

GDBD5 2 702 6.0 7.7 ([7.3, 8.1]) 9.5 12.8

Table 1. Performance of the uncalibrated base (Deeplasia) and the Georgia-specific calibrated version 
(Deeplasia-GE) on the test set of the Georgian bone age dataset. Previous results for the performance in the 
RSNA, DHA, and GDBD datasets5 are provided as a reference. DHA: Los Angeles digital hand atlas, GDBD: 
German dysplastic bone dataset. MAD: mean absolute difference, RMSE: root mean squared error, RSNA: 
radiological society of North america. Lower MAD and RMSE indicate higher accuracy. bEstimated range for 
the accuracies of the assessed single raters.
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of correction of all models, and the described effects are stable across manifestations of the partitionings. 
Furthermore, based on the same bootstrapping, we estimate the partitioning-specific 95% CIs of the performance 
metrics at [5.48, 6.16] months MAD, [7.08, 7.87] months RMSE, and [85.1%, 89.7%] 1-year accuracy. �us, 
the measured performance gains of Deeplasia-GE over the baseline version, Deeplasia, are independent of the 
partitioning of the dataset.

As a final analysis, we compared automatic and consensus manual BA estimates to the chronological age 
(CA, Fig. 5). We observed that with the uncalibrated version, Deeplasia, the BA of young boys and girls is on 
average similar but the BA estimates are slightly higher than CA in young cases and approach CA in older ones. 
However, for both the manual and the calibrated, Deeplasia-GE, estimations the BA in young Georgian boys 
is, on average, slightly delayed compared to girls. Further, for both manual and Deeplasia-GE methods, BA 
estimations show on average a high agreement with CA. Note that we observe relatively many outliers with a 
large deviation of the BA from CA with all methods, however, relatively few of these cases have been diagnosed 
with genetic or growth disorders.

In this work, we created Deeplasia-GE, a version of Deeplasia calibrated and tailored to the Georgian population. 
In the allocated test set, we observed that the uncalibrated version showed a systematic overestimation of 
BA in girls and – even more severely – in boys. Using bootstrapping, we confirmed that this effect is present 
independent of the exact partitioning. �is indicates that the overestimation is systematic within the GBAD. 
Using these insights, we show that this can be accounted for using simple linear regression models.

�e reduced accuracy of Deeplasia in the Georgian population is expected due to the observed differences in 
growth charts of Georgian children compared to Europeans30. However, whereas the accuracy (i.e., the numeric 
values assigned to individual images) for the uncalibrated version of Deeplasia is decreased in the Georgian 
population, the precision (i.e., the ability to discriminate between different groups of BAs/developmental stages 
or detect deviations from normal maturation patterns) is unaltered by the miscalibration. In turn, limiting the 
calibration to linear models sustains the precision of Deeplasia-GE. �us, the re-calibration instead of full or 
partial retraining of the model weights inherently guarantees to sustain Deeplasia’s high test-retest reliability5 
and, thus, applicability in longitudinal applications to Deeplasia-GE. Furthermore, Rassmann et al. (2024)5 
showed that Deeplasia has high accuracy for BA assessment of individuals with seven different skeletal disorders 
(namely achondroplasia, hypochondroplasia, pseudohypoparathyroidism, Noonan, Silver-Russell syndrome, 
Ullrich-Turner syndromes; SHOX-related short stature, and intrauterine growth restriction). �is feature should 
also be inherited by Deeplasia-GE, as it is using the same deep learning image representations. However, further 
studies are needed to test the applicability of both Deeplasia and Deeplasia-GE to other skeletal disorders.

As we have a relatively high number of raters, we assume that the averaged manual rating effectively serves 
as a reliable calibration reference. Yet, we observed that individual raters showed some variation with respect 
to their individual SMD (see Methods), so the exact calibration might show some degree of bias towards the 
participating reference raters. �us, the gains in assessed accuracy might be slightly overestimated compared to 
BA estimates of other raters.

�e lack of a global and uniformly sampled reference dataset hinders the development of a population-
agnostic AI for BA assessment. �erefore, given the known differences in growth of children from different 
ancestries, testing and (when needed) calibrating of AI tools for different populations could be a pragmatic 
way forward. Furthermore, in this study, we used only 121 training images sampled from the local population, 
compared to > 12,600 images in the RSNA dataset. �us, effectively, the proposed method for re-calibration 
allows for transferring the learned BA assessment from existing, large datasets to a small cohort representative 
of the target population. In this way, the simple linear re-calibration can help to overcome the general problem 
of data sparsity due to time-consuming reference ratings when creating BA tools for smaller populations. Yet, 

Fig. 5. Difference between assessed bone ages (BA) and the chronological age (CA). Le�: Consensus bone age 
(average of seven raters). Center: uncalibrated Deeplasia. Right: Calibrated Deeplasia-GE. Note that Deeplasia-
GE better replicated the average deviation of BA from CA than the uncalibrated base version.

 

 |        (2025) 15:32673 



regardless of data-efficient re-training, sufficiently large cohorts with reference ratings are required to reliably 
estimate the population-level performance. We hope that similar testing and (if needed) calibration of existing 
AI tools will be made for other small populations in the future. As an open-source AI, Deeplasia is suitable for 
this purpose.

In this work, we tested and calibrated the open-source BA assessment AI, Deeplasia, to the Georgian population. 
We used a re-calibration method to establish an accurate, population-specific BA assessment tool, Deeplasia-GE. 
In addition to inheriting the high precision from Deeplasia, we showed that Deeplasia-GE is also more accurate 
than all of our Georgian reference raters. �us, we suggest Deeplasia-GE as a reliable BA assessment AI for 
Georgian children.

�is is a retrospective study using patients’ hand X-rays. Ethical approval was obtained from, and informed 
consent was waived by, the institutional review board of the Givi Zhvania Pediatric University Clinic of Tbilisi 
State Medical University (MES 4 25 0000604228). All methods were performed following the ethical standards 
of the Helsinki Declaration. We collected a total of 457 hand X-rays from patients aged 0–18 years old. �is 
range covers the full spectrum of skeletal development from infancy through late adolescence, during which 
ossification progresses and epiphyseal plates gradually fuse with the bone sha�s. �is process varies across 
different bones and typically completes by the end of adolescence. Additionally, we include both boys and girls 
in the study to account for sex-based differences in skeletal maturation, as it is well established that bone fusion 
tends to occur later in boys than in girls. We manually excluded 22 images due to bad quality or incomplete 
representation of the regions relevant for BA estimation (carpal and metacarpal bones) and then selected 400 
images for BA reference rating.

�e manual BA reference rating was performed using the GP atlas. �e images included le� and right hands, and 
we selected the le� hand whenever possible. All raters assessed the X-rays individually and without knowledge of 
the CA on de-identified images. �e raters were three radiologists and four endocrinologists.

For 17 images, at least one rater was not able to conduct a BA assessment due to bad image quality or 
asynchronous BA within the images. Together with another 2 images in which at least one individual BA rating 
deviated > 30 months from an initial, uncorrected BA average, these images were excluded from the analysis. 
Hence, 381 images were included in the dataset,19 of these from children with a known genetic disorder.

We established the final consensus reference BA following the approach by Halabi et al. (2019)11. In brief, the 
individual BA ratings were corrected by subtracting each rater’s SMD from the initial, uncorrected consensus BA 
(range: [-3.07, 1.55] months). �en, we formed a performance-weighted average across raters, where each rater’s 
weight was proportional to 1/MAD (range: [0.112, 0.171]).

For comparing Deeplasia and Deeplasia-GE to individual raters, the respective rater was removed, and the 
consensus was re-calculated using weights obtained from only the remaining raters. We then compared each 
model version and the held-out rater against the consensus of the remaining raters.

Deeplasia consists of a hand-masking and an ensemble of three deep convolutional neural networks (CNNs) 
conducting BA estimation as an ensemble. �ese models were trained on the training set of the 2017 pediatric 
BA challenge of the RSNA covering an age range of 0–18 years. For details, see Rassmann et al. (2024)5.

To obtain the re-calibrated bone age, BADeeplasia-GE, linear regression models as.

 BADeeplasia-GE=slopesex=m/f · BADeeplasia+interceptsex=m/f,

where BADeeplasia are the predictions performed by Deeplasia in months, and slopesex=m/f and interceptsex=m/f 
are the sex-specific parameters of calibration.

�e regression analysis was conducted using scikit-learn (v1.2.2) in Python (v3.9). We randomly split the 
data into train and test partitions, stratifying for age and sex and assigning images of children with known 
genetic disorders to the test set.

For a definition of the performance metrics, see Rassmann et al. (2024)5. �e 95% CI of the RMSE was computed 
based on the chi-squared 

(

χ
2
)

 distribution, assuming normally distributed residual errors. �us, the CIs can 

be derived as.

 

(
√

n × RMSE
2

χ
2

0.975,n

,

√

n × RMSE
2

χ
2

0.025,n

)

,

where n is the sample size, and χ2

0.025,n and χ2

0.975,n represent the 2.5th and 97.5th percentiles of the χ2 
distribution with n degrees of freedom.
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We computed the 95% CIs for the SMDs using the standard error of the mean (SEM) and a Student’s 
t-distribution, deriving the CIs using:

d̄ ± t0.975,n−1 × SEd,

where d̄ is the SMD, SEd =

σd
√

n
 is the standard error, σd is the sample standard deviation, n is the sample 

size, and t0.975,n−1 is the critical value from the t-distribution with n degrees of freedom. We tested for the 
normality of the signed residuals using the Kolmogorov-Smirnov test. Using normality as the null hypothesis, 
we found p > 0.05 in all tests and, thus, assumed normality.

ICC estimates and their 95% CIs were calculated based on a two-way random effect model against the mean 
rating (k = 7) on the absolute agreement (ICC (2,k)).

All statistical analyses were conducted in Python using the Scipy (v1.13), statsmodel (v0.14), and pingouin 
(v0.5) packages.

�e datasets used and analysed during the current study can be made available from the corresponding author 
on reasonable request.
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