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1 | BACKGROUND

Recent studies in dominantly inherited Alzheimer’s disease (DIAD)
and sporadic AD (sAD) suggest a sequence of changes in CSF and
blood tau-related measures that correlate with and bridge AB-plaque
and neurofibrillary tangle pathologies.t™> Relatively early increased
phosphorylation of three specific sites (217, 231, and 181) correlates
with AB-PET positivity, followed after by increased phosphorylation of
site 205 before symptom onset; later, levels of the microtubule bind-
ing region tau 243 fragment (MTBR-tau243) and non-phosphorylated
tau increase near the time of clinical symptom onset, in parallel with
tau-PET signal increases.’-¢-8

The initial rise of soluble phospho-tau, decades before the expected
onset of clinical symptoms and years before substantial neurofibrillary
tangles (NFT) are present, has generated uncertainty about the clinical
and pathological meaning of the initial phospho-tau species.”1° Solu-
ble p-tau217, p-tau231 and p-tau181 species seem to correlate more
closely with Ag-plaque pathology than with hyperphosphorylated
NFT pathology. Related to this, AB-plaque-lowering therapies appear
to reduce levels of some blood and CSF phospho-tau species.}1-16
Clearly, natural history and interventional studies suggest causal links
between the increase in certain soluble phospho-tau measures and Ag-
plaque pathology. However, a comprehensive assessment of soluble
phospho-tau levels before and after removing aggregated ABis needed
to validate which phospho-tau isoforms are markers of Ag-plaque
pathology vs. tau tangle pathology.

The identification of soluble tau related biomarkers that rise in
parallel with NFT pathology supports the original notion that levels
of some forms of cerebrospinal fluid (CSF) tau reflect the release of
aggregated tau pathology, rather than a response to established Aj-
plaque pathology. These forms of tau include p-tau205, and fragments
that include the non-phosphorylated N-terminal domain and the cen-

amyloid beta plaque reduction, dominantly inherited Alzheimer’s disease, microtubule-binding
region, phosphorylated tau

* p-tau217 and p-tau231 correlate with AB-PET and respond to AB-plague lowering

* AB immunotherapy trials support a direct link between p-tau changes and AS

* Gantenerumab reduces Ag plaques but does not affect tau NFT-related biomarkers.

* Blood-based p-tau217 assays may provide a non-invasive tool to monitor AS

* MTBR-tau243 strongly correlates with tau PET and tracks NFT pathology progres-

* Further studies are needed to validate tau biomarkers for tracking NFT-targeting

tral proline-rich domain (known as total tau, t-tau), or the microtubule
binding repeat (MTBR) domain.817:18 Compared to most phospho-tau
species, p-tau205, t-tau, and MTBR-tau243 appear to have stronger
correlations with clinical symptoms, cerebral atrophy, and tau-PET and,
thus, may serve as a surrogate measure of clinical symptomatology.
Yet, the recent studies demonstrating a decrease in Ag-plaque pathol-
ogy have not shown clear evidence of an influence on NFT burden by
tau PET, nor evaluated these recently identified soluble tau biomark-
ers including relative abundance of p-tau measured as ptau/tau ratios
(%p-tau). Interventional studies are needed to assess the relationships
between soluble tau-related biomarkers, A-plaques, and NFTs.
Previously, we have shown that gantenerumab (an AB-plaque tar-
geting therapy), but not solanezumab (a AB-monomer targeted ther-
apy) substantially reduced Ag-plaques in DIAD.? In this study, we
explored the effect of both drugs on the longitudinal rate of change of
multiple CSF soluble tau-related biomarkers and tau PET in individu-
als with DIAD in the Dominantly Inherited Alzheimer Network Trials
Unit (DIAN-TU) 001 study. Based on our and other trial results,'? we
hypothesized that AB-plaque reduction would associate with a selec-
tive normalization of initial-changing soluble tau biomarkers; whereas,
consistent with the absence of a change in tau PET signal, later changing
soluble tau biomarkers would be unaffected by AB-plaque reduction.

2 | METHODS
2.1 | Study participants

Eligibility criteriafor the DIAN-TU-001 included participants at-risk for
or known to have a DIAD mutation, who were between 15 years before
to 10 years after the expected age of symptom onset,2® and had a

global Clinical Dementia Rating® (CDR®) of O (cognitively normal), 0.5
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RESEARCH IN CONTEXT

1. Systematic review: The measurement of multiple tau-
related biomarkers in observational cohorts of at-risk or
symptomatic Alzheimer disease has suggested that sol-
uble tau changes in the cerebrospinal fluid may reflect
both AB-plaque and NFT tangle pathology. However, no
studies have comprehensively assessed the effect of AS
plaque reduction on ‘early’ (e.g. p-tau217) and ‘late’ (e.g.
MTBR-tau243 and tau PET) tau biomarkers.

2. Interpretation: AB-plaque, but not soluble AS, reduction
was associated with a distinct reduction of multiple ‘early’
tau biomarkers without a change in ‘late’ tau biomark-
ers. These findings support recent diagnostic criteria for
Alzheimer’s disease classifying early and later changes
in tau-related biomarkers and suggests the use of spe-
cific phospho-tau biomarkers to monitor the response to
Ag-plaque lowering therapies.

3. Future directions: A comparative analyses of recently
approved ABimmunotherapies on tau-related biomarkers
is needed to better understand if these soluble measures
can be used to monitor long-term treatment effects.

(very mild dementia), or 1 (mild dementia).2! DIAD mutation carriers
were randomized 3:1 to active drug (gantenerumab or solanezumab)
or placebo with a minimization procedure.?2 Study personnel, spon-
sors, and participants were blinded to treatment assignment. The DIAN
Observational study (DIAN-OBS) participants included individuals of
age 18 or older who were at-risk for or known to have a DIAD mutation
and who had provided CSF. The DIAN-OBS and DIAN-TU studies have
similar protocols, including cognitive, clinical, imaging and biomarker
measures and both studies excluded participants with the APP E693Q
(Dutch) mutation. Full details for the DIAN-TU-001 and DIAN-OBS are
available in previous publications.1>2324 The studies were conducted
in accordance with the Declaration of Helsinki (version 7) and the
International Conference on Harmonization and Good Clinical Practice
guidelines and had ethics committee approval at each participating site.

Participants provided written informed consent.

2.2 | Study design

DIAN-TU-001 was conducted at 25 sites in 7 countries from Decem-
ber 2012 through November 2019. The trial registration number
is NCT01760005. Investigators are listed on the DIAN-TU web-
page https://dian.wustl.edu/for-investigators/diantu-investigator-
resources/dian-tu-study-team/. Biomarkers were assessed at base-
line and in years 1, 2, and 4. Target drug doses were increased
approximately halfway through the study as previously detailed.®
Gantenerumab was increased from 225 mg (subcutaneously, every
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4 weeks) to 1200 mgin 2016. Solanezumab was increased from 400 mg
(intravenously, every 4 weeks) to 1600 mg in 2017. The current CSF
study includes only those participants who had CSF and brain imaging
measured at all time points; the biomarker assessment between
years 2 and 4 represents the time during which the drug doses were
increased. This is an exploratory, post-hoc analysis that was not part
of the original clinical trial statistical analysis plan. Therefore, some
analyses are underpowered, and the results should be interpreted as
descriptive in nature.

For the DIAN-OBS participants (n = 247), the study was conducted
at 22 sites and data underwent yearly quality-control assessments for
irregular results and missing data from January 26, 2009 to June 30,
2017.

2.2.1 | Cerebrospinal Fluid Analyses

For both DIAN-TU-001 and DIAN-OBS, CSF was collected via stan-
dard lumbar puncture procedures using an atraumatic Sprotte spinal
needle (22 Ga), typically in the morning and in fasting state. DIAN-
OBS CSF samples were centrifuged immediately upon collection and
flash frozen, whereas DIAN-TU-001 samples were flash frozen imme-
diately upon collection and shipped to the DIAN Biomarker Core. For
the CSF tau-related analyses, each sample underwent two freeze-thaw
cycles. Full details of the CSF preparation and LC-MS/MS process-
ing have been previously outlined in detail®® and were consistent
for both DIAN-OBS and DIAN-TU-001. Importantly, except for non-
phosphorylated (total tau) and the microtubule binding region 243
(MTBR-tau243) concentrations, all phospho-tau measures represent
the phosphorylated to unphosphorylated (pT## / T##) ratios for each
modified residue or expressed as percentage (%phospho-tau).

2.2.2 | Tau and Amyloid PET Imaging

Full details on the imaging protocols for 11C-Pittsburgh Compound
B (PiB) PET and 18F-AV-1451 (flortaucipir) PET have been provided
previously.2>2¢ Region of interest PET data were converted to regional
standard uptake value ratios (SUVRs) — 47-60 minute window for
PiB PET and 80-100 for flortaucipir — using the cerebellar grey as a
reference and were partial volume corrected using a regional spread
function for each region, which when combined form a geometric
transfer matrix.2728 Of note, the tau PET results are derived from
DIAN-TU study data only, due to limited longitudinal tau PET in the
DIAN observational cohort.

2.3 | Study outcomes

The primary outcome of the DIAN-TU-001 study was the DIAN mul-
tivariate cognitive endpoint®. For this exploratory study, the primary
outcomes were the differences in the soluble CSF tau-related biomark-

ers in the treatment groups relative to the shared placebo group at
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the end of year 4. The two active treatment arms were compared to
placebo but were not directly compared to each other.

2.3.1 | Statistical Analyses

DIAN Observational Data

For each marker, the standardized mean value for mutation carriers
(MCs) were estimated at each estimated years to symptom onset (EYO)
point using linear mixed effects (LME) models using only baseline data,
then plotted over EYO. These values were transformed into a value
scaled from 0-100 (see below) to better project the magnitude of
change across the disease spectrum. The LME models included the fix
effects of mutation status (MC vs. non-carrier [NC]) and baseline EYO.
All possible two-way interaction terms along with second and third
order of EYO terms were examined to reach a final model that fit the
data well for each marker. A random effect was also included to account
for the family affiliation.

To evaluate the biomarker abnormality rate across EYO, percentage
of abnormality for each biomarker was calculated by every five-year
EYO bin (i.e. -15 to -11, etc.). The 95th percentile of the NC group was
set as abnormality cutoff for all measurements except for CSF AB42/40
where 5th percentile (lower ratio is more advanced disease) was used

as the cutoff for abnormality.

DIAN-TU Data

For the trial data, which had protocol specific biomarker collec-
tion intervals, a mixed model for repeated measures (MMRM) was
employed to estimate the change from baseline within each group and
to compare differences between these changes. The MMRM analysis
incorporated the treatment group (including either treatment group
and the shared placebo group), baseline values, post-baseline visit
times as categorical values, and the interaction between visit times and
treatment as fixed effects; and employed an unstructured covariance
matrix. We have recently developed a method to standardize differ-
ent biomarkers to a scale of 0-100, called CentiMarker?? (similar to the
Centiloid scale,*° using the 95th percentile of the greatest abnormal
values for all MCs and the mean from the NCs. This method provides
a way of quantifying the change for each biomarker in a similar scale
to better interpret the magnitude of drug effects on each biomarker. To
evaluate the correlation between amyloid PiB-PET or tau PET and each
soluble biomarker, Spearman correlations were computed based on
the individual annual rate of change estimated using the least squares
method. This method was chosen due to the relatively small sample size
of the trial as opposed to a bivariate mixed model which could be more
subject to model convergence issues.

To visualize the drug effect of gantenerumab on the normal dis-
ease progression pattern of the soluble tau biomarkers and amyloid
and neurodegeneration, LOESS curves were generated over cognition-
adjusted EYO for gantenerumab-treated MCs, a combined MC group
of placebo and solanezumab and NCs. To more intuitively compare
disease progression patterns across different biomarkers, each was
standardized to a scale of 0-100, called CentiMarker?? using the 95th

percentile of the greatest abnormal values for all MCs and the mean
from the NCs. EYO was adjusted using the baseline values of Interna-
tional Shopping List Test-Delayed Recall and Digit Symbol Substitution
Test, employing a simplified disease progression model based on cross-
sectional data.3! This adjusted EYO3! can more accurately delineate
the disease progression pattern compared to an unadjusted EYO (cal-
culated using only mutation and familial information,32 and is referred
to as the cognition adjusted EYO. Because the adjustment utilized only
baseline values, inclusion of two endpoints in the model was neces-
sary for identifiability. Although any two endpoints can meet the model
requirement, these ones were selected due to their greater sensitivity

to disease severity and amyloid levels.33

3 | RESULTS

Participant demographics and values of the key biomarker measure-

ments are listed in Table 1.

3.1 | Temporal ordering of soluble CSF tau
biomarkers

Our previous study from the natural history population® suggested
an ordering of changes in phospho-tau and total tau levels in
the progression of disease including pT217/T217, pT181/T181, and
pT205/T205. Here we expand on the order and magnitude of changes
by including the pT153/T153, pT231/T231, and MTBR-tau243 in
the DIAN-OBS cohort, Figure 1A. The figure highlights a near
decade difference between the time that amyloid PET, pT153/T1583,
pT231/T231, pT217/T217 and pT181/T181 rise substantially in MCs,
and the time when CSF pT205/T205, total tau, and MTBR-tau243
increase. Further, using 5-year time bins to track stage of disease,
we assessed the proportion of MCs who had abnormal levels for
each CSF tau-related biomarker, amyloid PET, Figure 1B. In align-
ment with the temporal pattern identified in Figure 1A, we found
that there were consistencies between the proportion of MCs who
had abnormal levels of specific phospho-tau ratios and amyloid PET,
which were sequentially followed by increases in the proportion of
MCs with abnormal levels of pT205/T205, MTBR-tau243 and CSF
tau as the age of symptom onset approached; specifically, 50% of
MCs had abnormal pT217/T217 levels between 20 to 15 vyears
before symptom onset (EYO -20 to -15), whereas 50% of MCs had
abnormal pT205/T205 and MTBR-tau243 between 10 to 5 years
before symptom onset (EYO -10 to -5), a 10 year difference. Sub-
sequently, we classify these groups of soluble tau biomarkers into
amyloid-related CSF tau biomarkers versus tau tangle-related CSF tau
biomarkers.

Based on these findings that indicate a temporal ordering of sol-
uble tau biomarkers and distinct associations with AS-PET, we then
explored the effect of amyloid targeting therapies on these soluble
tau measures to better determine relationships of soluble CSF tau

biomarkers with amyloid plaque and NFT pathologies.

85U8017 SUOILLIOD BAIIER1D) 3|qeolidde ay) Aq pausienob aie BN VO 88N JO S9 NI 10} AReiq1T 8UIIUO A8|IM UO (SUOTHIPUD-pUE-SWBILI0D A3 1M AIq Ul |UO//SdIY) SUORIPUOD pUe SWd L 34} 88S *[S5202/60/+2] Uo Ariqi]auliuo Ajim (3NZQ) A @ usbunyuenti3 eeusBepoinen inj wniuez seyosineq Aq 68902 Z[/200T OT/10p/wod A8 |im Akeiqpuljuo'seuinol-ze//sdny woiy papeojumoq ‘6 ‘S0z '6.25255T



McDADE ET AL.

Alzheimer’s &PDementia® | sora

THE JOURNAL OF THE ALZHEIMER’'S ASSOCIATION

TABLE 1 Clinical Dementia Rating and biomarker values at trial baseline by randomization.

Active gantenerumab

n=52
CDRO(n (%)) 31(60)
CDR >0 (n (%)) 21(40)
pT153/T153 0.16 + 0.08
pT181/T181 35.92 + 8.83
pT205/T205 1.16 + 0.52
pT217/T217 12.56 + 7.03
pT231/T231 19.15 + 12.22
MTBR-tau243 ng/ml 0.73 + 0.79
PiB-PET Composite (Centiloid) 64.8 + 51.9
Tau PET SUVR Summary Region 1.63 + 0.60
Hippocampal Volume (mm3) 7933 + 1154

Active solanezumab Shared placebo
n=50 n=40
30 (60) 22(55)
20 (40) 18(45)
0.18 + 0.08 0.17 + 0.08
38.23 + 10.41 3643 + 9.25
1.24 + 0.53 1.23 + 0.60
14.25 + 8.04 12.90 + 6.93
21.89 + 11.67 19.63 + 8.81
0.66 + 0.58 0.57 + 0.46
65.2 + 53.6 64.3 + 50.1
2.64 + 1.36 204 + 1.12
8238 + 1342 8026 + 1390

Abbreviations: CDR, Clinical Dementia Rating; MTBR, Microtubule binding region; PiB, Pittsburgh compound B; SUVR, Standard Uptake Volume Ratio.
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FIGURE 1 Soluble tau biomarkers track disease progression in Dominantly inherited Alzheimer disease natural history cohort. (A) mean
cross-sectional standardized values (y-axis) for soluble tau-related biomarkers (in CentiMarkers), clinical dementia rating sum of boxes (CDR-SB)
and amyloid PET for MCs across the estimated year of onset (EYO) (x-axis). (B) percentage (y-axis) of MCs with abnormal levels (greater than 2 SD
above mean of NC) of soluble tau-related biomarkers, CDR-SB and amyloid PET across the EYO (x-axis) in 5-year intervals.

3.2 | Effects of AB-PET change on soluble CSF tau
related biomarkers

Because we previously demonstrated a substantial A3-plaque lowering
effect by PET of gantenerumab,’® we first assessed the changes in each
of the CSF tau biomarkers in the gantenerumab treated group, com-
pared to placebo-treated MCs, using a MMRM analysis at each time-
point of CSF collection, Figure 2. Following gantenerumab treatment,
phospho-tau measures from the amyloid-related CSF tau biomarkers
had the most consistent reduction with AB-PET. Tau tangle-related CSF
tau biomarkers were unchanged despite the significant reduction of
AB-PET. Solanezumab treatment was not associated with differences
in PiB PET levels or any of the CSF tau related biomarkers relative to
the placebo group, apart from a higher level of MTBR-tau243 in the

solanezumab group compared to placebo.

We next assessed the association between the change in AB-PET
and the change in each of the CSF tau biomarkers by assessing the
correlations between the annual rates of change using the combined
data from all three groups (Figure 3). Consistent with the tempo-
ral association of AB-PET increase and the amyloid related CSF tau
biomarkers, we found that the rate of change of the amyloid-related
CSF tau biomarkers correlated with changes in AB-PET (correlation
range -pT217/T217 p = 0.50, [95% CI 0.30 - 0.66], p < 0.0001 to
pT231/T231 p = 0.35,[95% Cl 0.13 - 0.54], p < 0.0027); whereas the
tau tangle-related CSF tau biomarkers rates of change had no associ-
ation with change in AB-PET (correlation range pT205/T205 p = 0.14,
[95% Cl -0.10 - 0.36], p < 0.2531 to MTBR-tau243 p = 0.15, [95% ClI
-0/09 - 0.38],p < 0.2018).

Together, these findings show that the pathological accumulation

and treatment-associated reduction of AB-plaques with the levels of
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FIGURE 2 Gantenerumab and solanezumab treatment has distinct effects on amyloid PET and tau biomarkers. Estimated mean change in
CentiMarkers from baseline with 95% confidence intervals for the treatment (gantenerumab (blue), solanezumab (red)) and shared placebo groups
using MMRM analyses. (A, B) Estimated mean change from baseline in amyloid (PiB) PET and Tau-PET for gantenerumab. (C, D) Estimated mean
change from baseline in %phospho-tau153. (E, F) Estimated mean change from baseline in %phospho-tau181. (G, H) Estimated mean change from
baseline in %phospho-tau205. (1, J) Estimated mean change from baseline in %phospho-tau217. (K, L) Estimated mean change from baseline in
%phospho-tau231. (M, N) Estimated mean change from baseline in MTBR-tau243. (O, P) Estimated mean change from baseline in total tau
(Lumipulse immunoassay). Sample sizes at yearly assessments are listed below the x axes. Each drug group was compared to the shared placebo
group independently using the MMRM model. *p < 0.05, **p < 0.01, ***p < 0.001.

phosphorylation at specific sites in soluble CSF tau are linked and sug-
gest that pT153/T153, pT231/T231, pT217/T217 and pT181/T181
ratios may serve as surrogate markers of Ag-plaque pathology in the
context of AD amyloid plaque removal.

3.3 | Change in tau PET and soluble CSF tau
biomarkers

Recent biomarker studies of tau PET and soluble tau species in sAD
suggest that pT205/T205 and MTBR-tau243 are more closely corre-
lated with NFT burden than pT217/T217 and other amyloid-related
CSF tau biomarkers.1¢8:17.18 Therefore, we assessed the relationship

between longitudinal rates of change for each of the soluble tau-
biomarkers and tau PET (Figure 3). We found the strongest positive
correlations with tau PET change were with the change in the tau
tangle-related CSF tau biomarkers: CSF MTBR-tau243 (o = 0.48, ClI
[0.28, 0.64] p < 0.0001), followed by pT205/T205 (0 = 0.22, CI [-
0.02, 0.43] p = 0.067). For the amyloid-related CSF tau biomarkers,
we found no associations or a negative correlation which was great-
est for pT181/T181 (0 = -0.40, CI [-0.58, -0.19] p = 0.0004) and
pT231/T231 (p =-0.25, CI [-0.46, -0.02] p = 0.0314), indicating reduc-
tion of amyloid-related CSF tau biomarkers by gantenerumab despite
tau PET increases at later stages. These results further support the
independence of tau tangle-related CSF tau biomarkers, particularly

MTBR-tau243, with amyloid plague amounts and removal, while hav-
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ing strong relationships with NFT tau pathology. The disassociation
between amyloid-related CSF tau biomarkers and tau PET indicates
these AB-PET associated soluble tau biomarkers, including p-tau217
phosphorylation, are not fully causally related with tau PET NFT
pathology.

3.4 | Gantenerumab effect on tau-related disease
progression

Lastly, as EYO was utilized to explore how fluid tau biomarkers change
over the disease course (Figure 1), we next assessed how the treatment
effect of gantenerumab changed this disease progression trajectory
relative to the placebo and solanezumab groups and NCs (Figure 4).

For these analyses, each measurement was scaled to a CentiMarker
range.2? Notably, the CentiMarker range is typically between O (com-
pletely normal) to 100 (highest level for symptomatic MCs). Therefore,
the greater the CentiMarker change, the closer it is likely getting
towards a normal value. The figure shows that for most amyloid-
related CSF tau biomarkers, gantenerumab resulted in a normalization
of trajectories of approximately 50% during the asymptomatic phase
(EYO < 0); this effect diminished after symptom onset (EYO > 0).
There was not a biologically significant effect of gantenerumab on
the trajectories of the tau tangle-related CSF tau biomarkers, with
gantenerumab treated and placebo treated participants following the
same trajectories). Using this approach, we better demonstrate the
magnitude of changes in these biomarkers in response to treatment,

relative to normal disease progression.
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FIGURE 4 Gantenerumab effects on the biomarker trajectories of DIAD. Purple hashed-dot represents mutation carrier placebo-control; blue
hashed represents mutation carrier gantenerumab treated group; green solid line represents non-carrier placebo-control. EYO- estimated years
to onset of symptoms; (A) PiB-PET (standard uptake value ratio (SUVR)); (B) Tau-PET (SUVR), (C) hippocampal volume (based on MRI) mm3; (D)
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(MTBR)- tau243; (J) total tau level.

4 | DISCUSSION

The co-development of effective AB-plaque lowering therapies and
methods for comprehensively measuring soluble tau proteins has pro-
vided the opportunity to validate recent natural history studies linking
the two canonical pathologies of AD (AB-plaques and tau tangles).
Specifically, interventional studies like this provide key information
to move from association to causal relationships. In this study, we
assessed the effects of both AB-plaque targeting and soluble Ag-
monomer targeting therapies on multiple CSF tau biomarkers. Our
findings clearly indicate that increased phosphorylation of specific
regions of the tau protein correlate with AB-PET in the setting of DIAD;
they are temporally linked to the initial rise in AB-PET and decrease
as AB-PET is pharmacologically reduced. In contrast, we confirmed the
relationship between selected tau tangle-related CSF tau biomarkers,
particularly MTBR-tau243 and p-tau205, and tau PET, but not amy-
loid PET. These findings demonstrate that amyloid-related CSF tau
biomarkers phosphorylated at tau residues 181, 217, and 231 indicate
the amount and change in amyloid plaques, while p-tau205 and MTBR-
tau243 are biomarkers of tau NFT pathology measured by tau PET. The
combination of biofluid and PET biomarkers of AS and tau, along with
the selective AB-plaque reduction from gantenerumab, provides strong
experimental support for recent natural history studies that suggest

state dependent tau changes in AD.

Multiple natural history studies of DIAD and sAD12427:34-37 have
identified correlations between the development of A3-pathology and
the increase in multiple CSF phospho-tau levels, particularly p-tau217
and p-tau231. Likewise, AB-lowering immunotherapy trials in sAD
have demonstrated decreases in plasma measurements of p-tau181
and 217°8-40 in parallel with reductions in AG-PET.1>1641 Our cur-
rent results, along Ag-plaque lowering trials in sSAD41641 validate
increases in p-tau217 as a marker of AB-plaque pathology as measured
by PET. Although this does not mechanistically prove AB-plaques cause
the elevation of amyloid-related CSF tau biomarkers, the unique asso-
ciation of these changes of p-tau in AD and not other proteinopathies,
the temporal links with AB-plaque changes, and now the clear associ-
ations with an intervention that lowers Ag3-plaques, but not tau NFTs,
provides strong validation for a direct link of these initial stage CSF
p-tau measures and amyloid plaques. Our findings of a consistent neg-
ative association between the rate of change of amyloid-related tau
biomarkers and tau PET, Figure 3, reinforces the distinction between
the tau biomarkers that first emerge with Ag-plaques and respond to
therapies that lowers Ag-plaques but have minimal effect on tau PET.
The difference in the magnitude of the negative associations of the
amyloid related tau biomarkers may reflect differences in the concen-
trations, and thus variability, and/or could also reflect differences how
these biomarkers change with NFTs. There is increasing evidence that

pT217 has a more dynamic relationship based on the stage of disease
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-i.e. early elevation with AB-plaques, but a greater association with tau
PET at later stages of disease.*?

The high concordance between a normal AS-PET level and a nor-
mal pT217/T217 ratio also suggests that p-tau217 could be used to
monitor for an initial and substantial response to AB-plaque lowering
therapies in the context of AD. This could be particularly advantageous
given the availability of blood-based p-tau217 assays, and the mini-
mally invasive nature of phlebotomy. However, recent trials in SAD that
have resulted in AB-PET levels decreasing to levels near normal, have
resulted in phosphorylated tau measures decreasing to approximately
fifty percent of normal levels.!? Whether this discrepancy in magnitude
reduction of AB-PET and soluble p-tau with amyloid immunotherapy
represents a continued contribution of NFTs to all p-tau measures, or
whether there are other amyloid aggregates not detectable by PET
still driving p-tau phosphorylation, or longer treatment with Ag-plaque
lowering therapies is needed, remains to be determined. Despite the
engagement of AB-monomers by solanezumab, there was no effect on
any of the AB-plaque associated phospho-tau biomarkers. This, again,
reinforces the unique association with initial phospho-tau biomarkers
as a reaction to substantial Ag-plaque pathology.

In contrast to the progress in therapies lowering A-plaque pathol-
ogy, significantly less progress has been made in identifying agents that
can lower NFT pathology. An exception is recent phase 1 trial data
on antisense oligonucleotide therapies.*® Future studies should eval-
uate the potentially causal link between putative tau tangle-related
CSF tau biomarkers, pT205/T205 and MTBR-tau243, and NFT (tau
PET). Although neither gantenerumab nor solanezumab influenced
these soluble late-stage CSF NFT pathology measures or tau PET, with
the exception of a potential increase in MTBR-tau243 in solanezumab
treated group, we were able to demonstrate important longitudinal
associations between these tau tangle-related CSF tau biomarkers and
tau PET. For all groups in this study, the correlations for the rate of
change were highest between MTBR-tau243 and tau PET. Interest-
ingly, although pT205/T205 levels increased closer to disease onset,
when tau PET increases, the rate of change was not highly correlated
with tau PET change. Yet, the reduction of PiB PET and pT217/T217 in
the gantenerumab treated group was not replicated with pT205/T205.
This suggests that the phosphorylation of T205 marks a distinct phase
in the course of tauopathy in AD.*4*> Despite the relatively small num-
ber of individuals included in this study, the association of late-stage
fluid biomarkers with tau-PET support recent cross-sectional studies
from larger numbers of at-risk and symptomatic sAD.®

Together, these results further the concept that tau-related fluid
biomarkers inform the state and stage of AD. This has resulted in dif-
ferent soluble tau biomarkers being included in the updated Alzheimer
Association’s Diagnosis and Staging of AD criteria.*¢ Specifically, p-
tau217 is now proposed as a core biological marker of amyloid
pathology, sufficient to identify this key pathobiological process of AD.
Likewise, p-tau205 and MTBR-tau243 and other soluble tau measures
are included as potential markers of a later biological pathobiological
stage of AD more closely associated with clinical symptoms. Additional
clinical trial data from larger AB-immunotherapy trials will further vali-
date this staging. Further work is needed with therapies that lower NFT
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pathology to validate measures like MTBR-tau243 as biomarkers of tau
aggregates.

An important limitation for this work is the inclusion of DIAD
participants only, which may limit generalizability to sAD. However,
recent analyses of these same CSF tau-related measures have iden-
tified very similar temporal associations with disease progression
in SAD (amyloid- and tau-related biomarkers), and similarly strong
correlations between Ag-plaque or tau PET and initial- and later-
stage tau biomarkers. Moreover, recent clinical trials of multiple
AB-plaque lowering therapies that have evaluated soluble (plasma
or CSF) phospho-tau measures have demonstrated similar associa-
tions between AB-plaque reduction and substantial reductions of initial
tau biomarkers.1113164147 This suggest the results from our study
in DIAD are likely applicable to sAD, but analyses on the late-stage
tau biomarkers are needed in sAD interventional trials that remove
plaques or lower tangles, to further assess this. Another limitation of
this work is the lack of plasma tau biomarkers available to assess for
similarities to CSF measures. Lastly, the post-hoc nature of these studies
and the relatively limited numbers do not support sub-group analyses,
although the strong and consistent biological effects provide sufficient
power for conclusions.

This study suggests that, in AD, the presence and reduction of
Ag-plaque pathology can be measured not only by Ag specific biomark-
ers but certain phospho-tau biomarkers as well. The development of
blood-based phospho-tau measures, like p-tau217 concentrations and
ratios, offers an important opportunity to monitor the initial response
to anti-AB-plaque therapies through repeated measures using non-
invasive, more accessible techniques. Ongoing and future studies
targeting tau pathology may clarify the associations between specific
soluble biomarkers and NFTs and determine whether tau therapies
could also be monitored with blood or CSF measures.
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