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Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal type of neurodegenerative disease marked

by progressive and selective degeneration of motor neurons (MNs) present in the spinal

cord, brain stem and motor cortex. However, the intricate molecular mechanisms under-

lying primary cell death pathways, including ferroptosis-related genes (FRGs) mediating

MN dysfunction in ALS, remain elusive. Ferroptosis, a novel type of iron-dependent

cell death with the accumulation of lipid peroxidation products, stands distinct from

apoptotic-related stress and other cell death mechanisms. Although growing advances

have highlighted the role of iron deposition, apoptosis and alteration of antioxidant sys-

tems in ALS pathogenesis, there is little data at the systems biology level. Therefore, we

performed a comprehensive bioinformatic analysis of bulk RNA-sequencing (RNA-seq)

data by systematically comparing the gene expression profiles from iPSC-derived MNs of

ALS patients and healthy controls using our datasets as well as from the GEO database to

reveal the role of ferroptosis-related gene alterations in ALS, especially in selective MN

vulnerability of FUSED IN SARCOMA (FUS) mutations. In this study, we first identified

differentially expressed genes (DEGs) between FUS mutant and healthy controls. Sub-

sequently, the crossover genes between DEGs and FRGs were selected as differentially

expressed ferroptosis-related genes (DEFRGs). Functional enrichment and protein–protein

interaction (PPI) analysis of DEFRGs identified that DNA damage, stress response and

extra cellular matrix (ECM) were the most significantly dysregulated functions/pathways

in FUS-ALS causing mutations compared to healthy controls. While GSEA analysis showed

enrichment of genes associated with apoptosis, the degree of ferroptosis and iron ion home-

ostasis/response to iron of FUS MNs was lower. Altogether, our findings may contribute

to a better understanding of the relevant role of cell death pathways underlying selective

vulnerability of MNs to neurodegeneration in FUS-ALS pathophysiology.

Keywords: ferroptosis; apoptosis; ferroptosis-related genes; ALS; iPSC; motor neuron;

differentially expressed genes; RNA-sequencing; gene expression omnibus

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive and irreversible neurodegener-

ative disease characterized by the selective loss of motor neurons (MNs) in the motor

cortex, brain stem and spinal cord, leading to progressive muscle weakness and death from

respiratory failure typically within 2–5 years of symptom onset. While the majority of ALS
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cases are sporadic (sALS), the remaining 5–10% of cases are familial (fALS) with mutations

found in over 40 Mendelian inherited genes [1]. Among those, mutations in C9orf72, SOD1,

FUS, TARDBP and TBK1 are the most prevalent in European populations and have the

highest penetrance [2].These causative genes encode proteins with different functions, and

the pathogenesis has been implicated with defects in stress response, mitochondrial dys-

function, hyperexcitability, impaired protein homeostasis, aberrant RNA metabolism, and

impaired DNA repair [3,4]. In ALS, MN death is recognized to be both cell-autonomous,

driven by intrinsic cellular defects or genetic mutations, and non-cell autonomous, caused

by the external factors or detrimental signals from other cells (e.g., astrocytes, microglia) [2].

Despite extensive research studies having been performed, the etiology of ALS MN

degeneration, including the primary cell death mechanisms responsible for MN death,

remains poorly understood. This prevents the development of effective interventions and

precise therapy stratification. Cell death is a vital biological process that contributes to

development, homeostasis maintenance and disease prevention in multicellular organ-

isms. Cell death is broadly classified into two groups: programmed/regulated cell death

(energy-dependent) and non-programmed/necrotic cell death (energy-independent) [5,6].

Programmed cell death is defined by strictly regulated mechanisms and encompasses

orchestrated signaling cascades operated at the molecular level and further divided into

apoptotic or non-apoptotic programmed cell death. In contrast, non-programmed cell death

represents an uncontrolled biological process and occurs under the influence of accidental

cell damage [6,7]. MN death was initially implicated to be apoptotic, the most extensively

studied form of cell death, and triggered by the intrinsic pathway (internal stress such as

DNA damage, mitochondrial dysfunction leading to caspase activation), and the extrinsic

pathway (activation of death receptors, tumor necrosis factor or p75 neurotrophin recep-

tors) [8]. However, recent scientific investigations have reported an emerging repertoire of

non-apoptotic modalities of MN cell death, leading to the implication of ferroptosis in the

pathogenesis of various neurodegenerative diseases including ALS [9–13].

Ferroptosis, an iron- and lipid-peroxidation (LPO)-dependent form (and caspase-

independent form) of non-apoptotic cell death [14], is typically induced by the excessive

accumulation of iron and lipid reactive oxygen species (ROS) and/or inactivation of cellular

antioxidant systems, contributing to neuronal damage. More recently, abnormality of iron

homeostasis and anomalous accumulation of iron have been implicated in ALS patients

(motor cortex, spinal cord and cerebral regions) [14–18] and animal models [19–23], respec-

tively. Furthermore, a research study using induced pluripotent stem cell (iPSC)-derived

MNs from sALS patients showed the involvement of lipid peroxidation and ferroptosis

in MN cell death [24]. In addition, previous studies in ALS patients have demonstrated

that cell death triggered by lipid peroxides (iron-dependent regulated necrosis) resulted

in significant downregulation of endogenous mechanisms involved in protecting cells

against ferroptosis, such as the glutathione peroxidase 4 anti-oxidant defense checkpoint

(GSH/GPX4), and has been associated with degeneration of MNs and disease progression

in ALS (sALS and fALS), suggesting a potential link between ALS and ferroptosis [11,16,25].

Consequently, the overexpression of GPX4 in transgenic SOD1 mice significantly mitigates

symptoms and improved motor neuron function [23,26]. Additionally, recent evidence

explored ferroptotic cell death in FUS-ALS, uncovering mitochondrial disturbances and

heightened vulnerability to ferroptosis in FUS P525L MNs [18].

Although few research studies have been carried out on complex mechanisms of

ALS and ferroptosis, their specific relationship on a more system biology level such as

transcriptomics remains unclear. Since the FUS core function is to regulate transcription, we

wanted to systematically investigate how much mutations in FUS affect ferroptosis-related

gene (FRGs) expression. In the present study, using iPSC-derived MNs expressing FUS-
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ALS mutations, we performed a comprehensive bioinformatics analysis by systematically

analyzing five RNA-sequencing (RNA-seq) datasets, including our dataset from the publicly

available gene expression omnibus (GEO) database. We employed integrated differential

expression gene (DEG) analysis to identify target genes and altered pathways related to

ferroptosis in MNs between FUS mutant and healthy controls (WT), which contributes to

further explore the pathomechanisms and selective MN vulnerability in FUS-ALS.

2. Materials and Methods

2.1. RNA-Seq Data Acquisition, Processing and Screening of DEGs

According to the main purpose of our study, publicly available RNA-seq datasets of

“ALS patients versus healthy controls” using a search criteria including keywords and/or

combinations relating to human, iPSC, MNs, ALS, bulk RNA-seq and FUS mutations

were downloaded from the NCBI GEO database (https://www.ncbi.nlm.nih.gov/geo/,

accessed on 10 September 2024). With this inclusion criteria, we could only find four RNA-

seq datasets (studies 1 to 4) that could be used in combination with our study (study 5) for

integrated analysis. A summary of the datasets used is shown in Table 1. FASTQ files of

each study (see Table 1) were processed and analyzed using Partek™ Flow™ software, v11.0

following the standard pipeline within the software to quantify gene counts as described

in [27,28]. Briefly, FASTQ files were quality-checked (QA/QC), bases and reads with low

quality were filtered out and adaptors were trimmed from the raw data. Reads were

aligned to the reference human genome [hg38//GRCh38 (obtained from Ensembl assembly

v100)] using the STAR v2.7.8a aligner [29]. Quality control analysis was performed on

aligned reads to assess read quality using the QA/QC task. Processed aligned reads

were then quantified against the Ensembl v100 hg38/GRCh38 human reference genome

using the Expectation Maximization (EM) algorithm [30]. Gene counts obtained in each

individual RNA-seq study were further combined to identify DEGs across datasets. Next,

a noise reduction filter was applied to exclude genes considered as background noise,

and genes that were not expressed by any cell in the dataset were filtered out. Finally,

normalization and differential gene expression of the raw read counts were performed using

DESeq2 (v1.16.1) at the gene level [31] with a statistically significant threshold of Benjamini–

Hochberg false discovery rate (FDR) ≤ 0.05 and |log2FC| ≥ ±1. The normalized datasets

were adjusted for batch effects using the General linear model method. The effectiveness of

batch effect removal was confirmed by conducting principal component analysis (PCA)

on the normalized counts of the dataset both before and after the batch correction was

eliminated, and this aids to visualize similarities and differences between the samples

in the dataset while identifying potential outliers. Statistically significant DEGs selected

from the integrated dataset were clustered in a hierarchical manner using the correlation

distance method and displayed in a heatmap. A volcano plot was used to visualize the

distribution of DEGs. All above analyses were generated using Partek™ Flow™ software,

v11.0. Differential expression analysis results are provided in Supplementary Table S1.

2.2. Identification of DEGs Associated with Ferroptosis

We retrieved a well-documented list of human FRGs (322 genes) including drivers,

suppressors or markers from the public Ferroptosis database (FerrDb V2; http://www.

zhounan.org/ferrdb, accessed on 24 December 2024) [32]. In addition, we also used the

GeneCards database (https://www.genecards.org, accessed on 24 December 2024) [33],

which provides comprehensive information on human genes. The term “ferroptosis” was

used as the keyword for the search to identify genes related to ferroptosis (732 genes),

with a relevance score ≥ 1, and protein-coding-related genes. Next, the targets retrieved

from the above two databases were merged, and the final list of FRGs was collected after
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removing duplicate genes. Next, we intersected the ferroptosis-related genes list with DEGs

to identify common ferroptosis-related DEGs (DEFRGs) between the FUS-ALS patients and

WT controls, and a total of 31 DEFRGs were screened out (as shown in the Supplementary

Table S2) using the Venn diagram and selected for further analysis. The list of FRGs and

DEFRGs is provided in Supplementary Table S3.

2.3. Functional Enrichment Analysis of DEGs and DEFRGs

To better understand the biological functions of DEGs and DEFRGs associated with

FUS-ALS and the related signaling pathways involved, we performed a functional enrich-

ment analysis using the database for annotation, visualization and integrated discovery,

DAVID version 6.8 (https://david.ncifcrf.gov/summary.jsp, accessed on 30 April 2025,

enrichment testing across all GO functions, pathways) online platform [34]. GO enrichment

was applied to annotate and analyze genes involved in biological process (BP), molecular

function (MF), and cellular component (CC) gene function annotations. Pathway enrich-

ment analysis was carried out using Kyoto Encyclopedia of Genes and Genomes (KEGG)

and Reactome databases. Functional analysis was carried out using default settings, and a

p-value ≤ 0.05 was considered to be a statistically significant enrichment.

2.4. Protein–Protein Interaction Network Analysis

We generated a PPI network for DEFRGs using the Search Tool for the Retrieval of Inter-

acting Genes/Proteins (STRING) database (https://string-db.org/) [35] with the minimum

required interaction score ≥ 0.15. The nodes represent the DEGs/proteins, and the edges

indicate the predicted functional interactions (databases, high-throughput experiments,

co-expression/co-occurrence, text mining, neighborhood genes) between two proteins.

Subsequently, the PPI network was imported into Cytoscape 3.10.3 software [36] to build a

visual network and execute topological analysis. The key nodes were selected according to

the scoring of maximal clique centrality (MCC) by using the cytoHubba [37], a plug-in for

Cytoscape that explores important nodes and subnetworks by topological algorithms. Ten

genes scoring the highest were identified as hub genes in our study. These hub genes may

play essential roles in regulating ferroptosis and warrant further investigation.

2.5. Gene Set Enrichment Analysis (GSEA)

To study the functional alterations in pathways and biological processes of the samples

in the expression datasets, we performed gene set enrichment analysis (GSEA) [38] on

the normalized gene counts (DESeq2) of RNA-seq data (mutant and control) using the

GSEA function in PartekTM FlowTM software, v11.0. The used gene sets for testing were the

GO-term-derived gene set database (biological process, molecular function, and cellular

component) and KEGG pathway database. The metric for ranking gene parameters was

signal-to-noise, and the significant gene sets/pathway enrichment was identified by the

normalized enrichment score (|NES| ≥ 1) and p ≤ 0.05.

2.6. Statistical Analysis

The general pipeline for combined RNA-seq analysis used in this study, including

alignment, quantitation, normalization and differential gene expression analysis as well as

statistical analyses were performed on Partek™ Flow™ software, v11.0 to aid the visualiza-

tion and interpretation of the expression patterns of DEGs. When appropriate, p-values

(p-value ≤ 0.05) were calculated and adjusted for multiple testing using FDR correction

statistical methods for DEGs using Partek™ Flow™ software, v11.0. p-values/FDRs ≤ 0.05

and log2FC ≥ 1 or log2FC ≤ −1 were considered as statistically significant thresholds for

the identification of DEGs. Unpaired, two-tailed Student’s t-tests were performed using

GraphPad Prism v9.4.1. software to analyze gene expression levels.
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3. Results

3.1. Data Processing and Identification of DEGs

We searched relevant RNA expression profiles from the GEO database and focused

our analysis on iPSC-derived spinal MN studies from FUS-ALS patients and age-matched

WT controls. As a result, five gene expression datasets, GSE77702 [39], GSE94888 [40],

GSE168831 [41], GSE203168 [42] and GSE272827 [43], were collected and considered for

further analysis (Table 1). The workflow of the study is shown in Figure 1. After background

noise correction, all the datasets were pooled, followed by normalization. The PCA plot

demonstrated a clear separation of individual FUS-ALS datasets from the remaining groups

(Figure 2A). The batch effect across ALS samples was removed effectively using PCA,

highlighting that no such separate clusters were observed (Figure 2B). The combined dataset

obtained after processing and batch effect correction gave rise to an initial dataset consisting

of 33 samples (17 ALS samples and 16 WT controls) and 36,828 genes, henceforth referred

to as the final dataset. Next, differential expression analysis was performed between FUS-

ALS and WT control samples to identify DEGs based on the threshold of FDR ≤ 0.05 and

|log2FC (Fold Change) | ≥ 1. A total of 672 DEGs were identified after removing genes

without the HGNC annotation ID, containing 328 upregulated and 344 downregulated

genes, which were visualized using a volcano plot and heatmap (Figure 2C, displayed in

Supplementary Table S1). The volcano plot showed the distribution of gene expression

between FUS-ALS and control groups (Figure 2D), whereas the clustered heatmap of DEGs

revealed the distinct patterns of upregulated or downregulated genes across the samples

grouped by genotype (Figure 2E).

Figure 1. The workflow of this study. ALS, amyotrophic lateral sclerosis; DEG, differentially expressed

genes; FRG, ferroptosis-related gene; DEFRGs, differentially expressed ferroptosis-related genes; GO,

gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein–protein interaction.
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Table 1. Summary of five gene expression profiles derived from GEO database.

Study GEO Dataset Platform Mutation Gender (Age)
Sample Size (n)

ALS/Control Library Type Layout DIV References

Study 1 GSE77702
GPL11154
Ilumina

HiSeq 2000
FUSR521G N/A 3/2 PolyA Single 34 [39]

Study 2 GSE94888
GPL16791
Illumina

HiSeq 2500
FUSP525L Female (20)

(FUSwt/P525L)
3/3 Ribo-zero Paired 19 [40]

Study 3 GSE168831
GPL24676
Illumina

NovaSeq 6000

FUSR495QfsX527

(c.1483delC),
frameshift

FUSAsp502ThrfS*27

(c.1504delG),
frameshift

FUSwt: Female (45),
Male (64), Male (46)

FUSR495QfsX527 (c.1483delC),
frameshift: Male (26)

FUSAsp502ThrfS*27

(c.1504delG), frameshift:
Male (19)

6/6 PolyA Paired 35 [41]

Study 4 GSE203168
GPL20301
Illumina

HiSeq 4000
FUSH517Q (mean ± SD, 4 Patients)

45.0 ± 3.6 (age: N/A) 2/2 Ribo-zero Single 30 [42]

Study 5
(our study)

GSE272827
GPL18573
Illumina

NextSeq 500
FUSP525L

Isogenic control:

FUSWT-eGFPhet: Female (58)
Isogenic mutant:

FUSP525L-eGFPhet

FUSR521C het

Female (58)

3/3 PolyA Single 21 [43]

DIV: days in vitro.
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Figure 2. Transcriptomic data analysis. (A) Principal component analysis (PCA) of samples before

batch effect removal and (B) after batch-effect removal, highlighting similarities and differences in the

gene expression between the various FUS samples compared to WT samples. In the three-dimensional

PCA plot, each sample is represented as a sphere/square; the closer the spheres/squares in the

spreadsheet, the higher the similarity among sample groups. A total of 33 types of samples from

5 different datasets are shown on this figure; different colors indicate different datasets, while

different symbols (sphere/square) represent sample attribute types (WT; sphere and FUS mutant;

square). (C) Statistics on the results of differentially expressed genes (DEGs) in the FUS samples.

(D) Volcano plot displaying the distribution of DEGs between FUS mutant and WT controls (p ≤ 0.05,

FDR ≤ 0.05 and log2Fold Change) ≥ 1 or log2(Fold Change) ≤ −1). (E) Heatmap representing the

expression profile of the 50 DEGs identified by FUS mutant versus WT controls (p ≤ 0.05, FDR ≤ 0.05,

|log2FC | ≥ 1). Expression values sorted according to sample (rows) and gene (columns), where the

color change from red to blue suggests gene expression changing from high to low.

3.2. Functional Enrichment Analysis of DEGs

To better understand the underlying potential biological functions, we performed

GO and pathway (Reactome and KEGG) enrichment analysis on the 672 DEGs. The GO

analysis results (p-value ≤ 0.05) showed that upregulated DEGs were significantly enriched

in various biological processes, including regulation of transcription by RNA polymerase

II and DNA repair and chromatin organization. DEGs were more likely to be involved in

the nucleus, nucleoplasm and chromatin complex in the cellular components category. In

terms of molecular functions, DEGs were mainly involved in DNA binding functions. The

top six of the biological process, cellular component and molecular function enriched terms

are shown in Figure 3A, Supplementary Table S2. Pathway enrichment analysis revealed

significant enriched terms, including gene expression, DNA replication, RNA polymerase

II transcription and cell cycle pathway (Figure 3B, Supplementary Table S2). Considering

the MNs as the main focus of this study, the comprehensive enrichment analysis indicated

crucial molecular alternation in DNA repair and relevant functions in FUS-ALS MNs.
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Figure 3. Functional enrichment analysis of DEGs. (A) Bar plot of gene ontology (GO) enrichment

analysis of upregulated DEGs. (B) Pathway enrichment analysis of upregulated DEGs. (C) Bar

plot of gene ontology (GO) enrichment analysis of downregulated DEGs. (D) Pathway enrichment

analysis of downregulated DEGs. GO enrichment analysis was based on the topmost significant

enriched terms in each of the biological process (BP), cellular component (CC) and molecular function

(MF) entries (p ≤ 0.05). (E) Gene set enrichment analysis (GSEA) was performed using normalized

counts from the DESeq2 output ranked list in FUS-ALS datasets (p ≤ 0.05 was considered statistically

significant). The top three most significantly enriched gene sets were shown to be positively and

negatively correlated with the gene counts based on NES value. The y-axis represents the enrichment

score for the overall gene set, and on the x-axis are genes (vertical black bars) represented in gene sets.

For the downregulated DEGs, significant biological processes included protein folding

in endoplasmic reticulum (ER), ion membrane transport and synaptic transmission. The

cellular component enrichment analysis showed important terms, including organelle

membrane, ER and extracellular exosome. Among the molecular functions, the most

enriched functions were ion binding, ion channel activity and transporter binding. The

significant GO-enriched terms are displayed in Figure 3C. The KEGG analysis indicated

that DEGs participated in the cell adhesion pathway, lysosome and metabolic pathways

(Figure 3D, Supplementary Table S2).
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3.3. GSEA Analysis in FUS-ALS

To further explore the impact of gene expression levels on FUS-ALS phenotypes (FUS

mutant and WT controls), we used the GSEA algorithm to investigate the relationship

between gene expression in the combined dataset and the biological processes, cellular

components, molecular functions and KEGG pathways involved (p ≤ 0.05) (Supplementary

Table S3, Figure 3E, Supplementary Figures S1 and S2). The results demonstrated that genes

in the combined dataset were significantly enriched in cellular functions such as DNA

repair, cell cycle and chromosome organization pathways, and positively correlated with

the expressed genes, while cellular metabolism, cell adhesion, iron ion homeostasis, iron

ion transport, ubiquitination, synaptic/neuronal and organelle functions were negatively

correlated with the expressed genes. In addition, the GSEA results also revealed that the

ferroptosis pathway enrichment was inhibited in the FUS MNs (ferroptosis: NES = −1.34,

p = 0.27, leading edge size = 14; VDAC2, FTH1, SLC3A2, ATG7, MAP1LC3C, SLC7A11,

SLC39A14, MAP1LC3B, ACSL1, GCLM, PRNP, ACSL4, TF and MAP1LC3B2), whereas

the apoptosis-enriched gene set, including the p53-signaling pathway, neuron apoptosis

process, ROS levels and antioxidant activity, were mostly upregulated (apoptosis: NES

= 0.74, p = 0.86, leading edge size = 29) (Figure 3E, Supplementary Figures S1 and S2

and Supplementary Table S3). However, most likely due to the small sample set size, the

ferroptosis- and apoptosis-related gene set missed statistical significance in the enrichment

analysis. Nevertheless, these results suggested that there was a significant difference

between the FUS mutant and WT control groups at the transcriptional level, and the

DNA repair as well as the cell death-related terms including ferroptosis/iron homeostasis

pathways were markedly changed in FUS-ALS. We hypothesize that ferroptosis may play

a certain role in the disease progression of FUS-ALS. Thus, to substantiate the role of FRGs

differentially expressed in the FUS MNs, the DEGs obtained from GEO gene expression

datasets were intersected with the ferroptosis gene set to identify DEFRGs. The detailed

DEFRG results are presented below and in Supplementary Table S4.

3.4. Identification of Differentially Expressed Ferroptosis-Related Genes (DEFRGs)

To deepen the analysis on a potential relationship between ferroptosis and FUS-ALS,

322 and 732 FRGs were collected from FerrDb and GeneCards databases, respectively. After

removing duplicate genes, a total of 896 FRGs were obtained by combining the targets

retrieved from the above two databases. Using a Venn plot, we intersected FRGs with

the DEGs in FUS-ALS and identified 31 overlapped DEFRGs, including 16 upregulated

and 15 downregulated genes for further analysis (Figure 4A). The expression levels of

31 DEFRGs in FUS-ALS are shown in the heatmap (Figure 4B). The violin plot shows

the expression patterns of 31 significantly DEFRGs, which were expressed differentially

between FUS mutant and WT control samples (Figure 4C,D). Details of overlapping genes

(out of 31 DEFRGs) from the FerrDb, including six drivers and five suppressors, are

presented in Table 2. All the FRGs and DEFRGs are listed in Supplementary Table S4.

Table 2. The 11 overlapping genes (Up/Down) from the FerrDb and their role in ferroptosis.

Type Genes

Driver CDH1 (Down), DDR2 (Down), ACSL4 (Down), USP11
(Down), ZEB1 (Up), and MYCN (Up)

Suppressor
TFAP2A (Up), RARRES2 (Up), PTPN18 (Up), LAMP2

(Down), and VCP (Down)

Marker None
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Figure 4. Identification of differentially expressed ferroptosis-related genes (DEFRGs). (A) Venn

diagram identifying the 31 overlapping DEFRGs between DEGs in GEO datasets (672) and ferroptosis-

related genes (322) in the FerrDB and GeneCard (732) databases, respectively. FRGs, ferroptosis-

related genes; DEFRGs, differentially expressed ferroptosis-related genes. (B) Heatmap displaying the

expression of 31 DEFRGs in FUS and healthy controls (WT). (C,D) Violin plots illustrating the gene

expression levels of 31 DEFRGs between FUS mutant and WT controls. (C) A total of 16 upregulated

genes (D) 15 downregulated genes, blue for WT group, and red for FUS mutant group; the X-axis

shows the ferroptosis-related genes, and the Y-axis represents the expression level of genes. Student’s

t test was employed to assess the gene expression values between the mutant and WT groups. The

asterisks indicate that the differences are statistically significant (* p ≤ 0.05, ** p ≤ 0.01).

3.5. Enrichment Analysis of DEFRGs

To better comprehend the different pathways and biological functions of the 31 DEGs

associated with FRGs in FUS-ALS, we performed GO annotation and KEGG enrichment

analysis. GO enrichment analysis revealed that the biological process was primarily

enriched in response to ROS, glucose starvation and RNA processing, while downreg-

ulated genes were mainly involved in protein import and protein catabolic processes.

The cellular component comprised the nucleus/nucleoplasm (represented terms) and

extracellular exosome (downregulated). Furthermore, the enriched molecular function

contained DNA/RNA binding, while the depleted terms included protein domain bind-

ing and ubiquitin protein–ligase binding. The top six most significantly enriched terms

in each of the categories were identified for the GO visualization bar graph (Figure 5A,

Supplementary Figure S3). In addition, the pathway enrichment analysis revealed that

DEFRGs were linked to extracellular matrix (ECM) and post-translational modifications

(Figure 5B, Supplementary Figure S3), suggesting precise regulation of ferroptosis at mul-
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tiple levels. The results obtained from GO/pathway enrichment analysis are shown in

Supplementary Table S5.

Figure 5. Functional enrichment analysis and PPI analysis of DEFRGs. (A) GO enrichment analysis

of DEFRGs based on the top significantly enriched terms in each of the BP, CC and MF groups.

(B) Pathway enrichment analysis of DEFRGs based on the top enriched pathways. The X-axis repre-

sent p-values, and the Y-axis indicates the GO/pathway terms. (C) Protein–protein interaction (PPI)

network of the 31 candidate DEFRGs, in which the nodes represent proteins, and the edges represent

the interaction of proteins. A thicker line indicates stronger data evidence, and genes/proteins

of a darker color were distinguished using color shading from darker to lighter, according to the

score (topological parameters). (D) Top 10 hub DEFRGs identified by the maximal clique centrality

(MCC) algorithm using Cytoscape (cytoHubba plugin); the deeper the color, the higher the gene rank.

GO, gene ontology; BP, biological process; CC, cellular component; MF, molecular function. For all

analyses, p ≤ 0.05 was considered statistically significant.

3.6. Protein–Protein Interaction (PPI) Network Analysis of DEFRGs

To further explore the interactions of these identified 31 DEFRGs, we performed PPI

network analysis. We obtained a PPI network consisting of 31 nodes and 110 edges, where
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network nodes represent proteins, and the edges represent protein–protein associations.

The results showed that the 31 DEFRG decoded proteins were closely interconnected in

the network (PPI enrichment p-value = 1.74 × 10−4) (Figure 5C), and these ferroptosis-

related proteins were involved in biological functions such as the extracellular matrix and

membrane bound organelle, suggesting that the mechanism related to ferroptosis may play

an important role in the pathogenesis of FUS-ALS. Additionally, we have also identified

several hub genes that have a high degree in the PPI network and which are ranked from

high to low as follows, CDH1, HSPA5, CDH2, ZEB1, MYCN, HNRNPA1, LMNB1, CTSB,

LAMP2 and ACSL4 (Figure 5D), highlighting that these genes played an important role

in the core network. The interactions were visualized using Cytoscape software, and

the PPI analysis results as well as scores of the DEFRGs (MCC algorithm) are listed in

Supplementary Table S6.

4. Discussion

Although multiple mechanisms have been implicated in the pathogenesis of ALS,

including glutamate excitotoxicity, mitochondrial dysfunction, oxidative stress, immune

dysregulation and impaired axonal transport [44], underlying pathomechanisms causing

MN degeneration and cell death pathways are poorly understood. Significant advance-

ments have been made in microarray/RNA-sequencing analysis to identify gene expression

profiles in different cells/tissues and contexts, thus helping to reveal important biological

pathways under different conditions [28,45,46]. However, there have been few transcrip-

tomic studies focused specifically on ferroptosis-associated genes and pathways in ALS.

For doing so, we compared our own and different available datasets to increase the

number of biological replicates and generalizability. With that, we systematically explored

the role of the ferroptosis-related gene signature in FUS-ALS. Briefly, we collected five

comparable RNA-seq datasets from the GEO public database and performed integrated

bioinformatic analysis to specifically look for mRNAs associated with ferroptosis and their

related pathways that are differentially expressed in MNs from iPSC-derived FUS mutant-

ALS patients and WT controls. A total of 672 common DEGs that are combined in five RNA-

seq datasets were identified between FUS mutant and WT control MNs. The enrichment

analysis revealed that DEGs were primarily misregulated in gene expression (transcription),

organelle homeostasis, ER-protein folding and cell adhesion pathways. The accumulation

of ROS is an important mechanism that can be the cause or consequence of mitochondrial

dysfunction of MNs and can promote damage to the cell/organelle membrane, which

leads to ferroptosis and other programmed cell deaths, such as apoptosis. Indeed, in GSEA

analysis of RNA-seq data, we found that key genes involved in DNA repair, p53 signaling,

apoptosis, antioxidant activity, cellular response to ROS and stress-activated protein kinase

signaling cascade were mostly enriched with higher enrichment scores, whereas gene sets

related to mitochondrial function, cellular metabolism and ubiquitin/proteasome-mediated

protein catabolic process were downregulated in FUS mutant MNs. These results suggest

that increased cellular stress, caused by an imbalance between ROS and antioxidant defense

systems, may induce apoptosis, and that played an important role in the pathogenesis

of FUS-ALS.

Several studies have reported that FUS plays a crucial role in various cellular processes

such as proteostasis, DNA repair (nuclear and mitochondrial), mitochondrial functions

and RNA splicing or RNA metabolic processes [47–49]. Abnormal expression of FUS has

been reported to exacerbate the accumulation of DNA damage, and p53 is involved in

activating DNA repair pathways. However, in case of prolonged DNA damage that is

beyond repair, the p53 promotes neuronal apoptosis by increasing the transcription of

pro-apoptotic genes [47,49–51], suggesting a crucial role of FUS in the DNA repair-induced
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apoptosis mechanism in ALS pathology. Besides that, in a GSEA analysis, the degree of

ferroptosis and iron ion homeostasis/response to iron of FUS MNs was lower, indicating

that the genes related to ferroptosis were transcribed at lower levels compared to a WT

control group. This downregulation of ferroptosis genes (a gene set) in the gene expression

dataset suggests a decrease in the activity of ferroptosis (or less prevalent) in the FUS MNs,

and this depletion could be due to multiple factors, including altered cellular metabolism

or signaling pathways, various types of external stimuli, increasing antioxidant defenses

and reducing iron availability, and even from changes in gene expression regulation that

are altered in response to the FUS mutation, which was clearly evident from our GO/GSEA

enrichment analysis of DEGs.

To further investigate a putative transcriptional activation of ferroptosis, we inter-

sected the above-mentioned DEGs with FRGs collected from FerrDb and GeneCards. By

this, we identified 31 potential DEGs (16 upregulated and 15 downregulated) related to

ferroptosis (DEFRGs) between FUS mutant and WT controls. To understand the role of

these DEFRGs in FUS-ALS, we further carried out GO/pathway enrichment and PPI

analysis. The results of this analysis showed that the regulation of multiple biological

functions and pathways, including increased ROS levels, regulation of gene expression

(RNA polymerase II-specific) and stress response, were altered, which was in accordance

with previous studies on ALS [52–54]. Taken together, the potential biological functions of

DEFRGs in FUS-ALS involved the regulation of various signaling pathways and processes.

The identified pathways might be triggered by upstream pathways, rather than being the

primary pathway affected (e.g., ferroptosis) activated by a unique stimulus or response

to a specific stress signal. Notably, the GSEA analysis of gene expression data showed

that the ferroptosis pathway, including response to cellular iron/iron homeostasis, was

downregulated in FUS MNs. It should be noted, DEFRGs also pointed towards a down-

regulation of ferroptosis (upregulated suppressor of the ferroptosis; downregulated driver

of the ferroptosis). We assume that the collective effect of misregulated suppressors and

drivers of ferroptosis may induce the decreased expression of ferroptosis at an early time

point, while this might be different at later time points, which needs future investigations.

While a considerable amount of work has focused upon the metabolic adaptations that

are found in FUS MNs and which enable specific adaptations, including apoptosis, metabo-

lites, iron homeostasis and the need for protein homeostasis, the precise vulnerabilities of

neuronal populations arising from these adaptations or alterations under physiological

conditions to cell death remain poorly understood. In this context, through our gene ex-

pression studies of FUS-ALS datasets, we provided preliminary clues about the underlying

cell death pathways to uncover the sensitivities of MNs to ferroptosis. On one hand, our

enrichment analysis has revealed that DEGs in FUS MNs were primarily enriched in apop-

tosis or apoptosis-mediated functions. On the other hand, ferroptosis (or DEFRGs) showed

reduced expression levels without significant enrichment of classical ferroptosis markers

(e.g., GPX4) or ferroptosis-related processes, which suggest that FUS MNs are less prone to

ferroptosis, at least at the time point of analysis. Despite the differences between the two

cell death pathways, accumulating evidence suggests that ferroptosis and apoptosis can be

induced by similar stress signals (e.g., ER stress or oxidative stress) and shared common

regulators, such as p53. They may occur in the same damaged cells either sequentially or

simultaneously and can even through their combined actions induce cell death [55,56]. As

an essential gene, p53 is required not only for transcription of the pro-apoptotic genes to

various stress signals but also for the suppression of the anti-ferroptosis protein solute car-

rier family 7 member 11 (SLC7A11, a subunit of the cysteine–glutamate antiporter), which

plays key role in cystine uptake and GSH metabolism [57]. Fitting to this, in GSEA analysis

we identified upregulation of p53-signaling pathway and also found that the SLC7A11 gene
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was downregulated in the ferroptosis gene set. Regulation of ferroptosis by p53 is context-

dependent (e.g., gene mutation and cell-type), can promote the presence of ferroptosis

by inhibiting SLC7A11 transcription, and can also reduce cell sensitivity to ferroptosis by

acting on transcription-independent mechanisms [58]. A recent study showed that in cancer

cells p53 binds to and sequesters pro-ferroptotic enzyme dipeptidyl-peptidase-4 (DPP4)

within the nucleus, forming an inactive complex, thus preventing its interaction with NOX1

(NADPH oxidase 1) and decreasing lipid peroxidation/ferroptosis [59]. In other contexts,

p53 activation can lead to the expression of its downstream genes involving the cell cycle

inhibitor CDKN1A/p21 pathway, which in turn increases intracellular GSH/GPX4 levels to

prevent lipid peroxidation and reduce ferroptosis sensitivity [60]. Further, in tumor cells

p53 also regulates ferroptosis sensitivity by upregulating the expression of a polyamine

metabolism-related enzyme, spermidine/spermine N-acetyltransferase 1 (SAT1) [61]. How-

ever, the exact underlying mechanism of p53 mediating reduced ferroptosis sensitivity

in the above pathways is unknown and needs to be further elucidated. Further, in our

differential enrichment analysis, gene expression and the stress response pathways were

found in DEFRGs, while DEGs associated with the DNA repair/p53 and with ubiquitin

proteasomal response were connected to response to apoptosis and are consistent with the

role of these specific pathways in each respective death program [16]. Although, the cellular

consequences of ferroptosis regulation by p53 could be complex, cell type-specific, bidirec-

tional (positive or negative regulation), and context-dependent with distinct mechanisms,

p53 was proposed to play a critical regulatory role in the crosstalk between ferroptosis

and apoptosis [56,58]. Thus, p53 might be involved in activating DNA repair pathways

(e.g., upregulation of DNA damage response genes or during extensive DNA damage) and

may either trigger ferroptosis to help remove dead/damaged MNs or reduce the sensitivity

of MNs to ferroptosis and promote normal cell survival, especially during the mild stress

or injury. Our study’s main focus is to systematically investigate cell death activation

pathways as well as cell adaptability in FUS mutant neurons to resist early forms of stress

before MN loss is more obvious. Moreover, our own FUS-ALS datasets are from early

time points where cells are viable before any visible signs or symptoms of cell damage

occur [43,47,62]. Similarly, no early phase of cell stress or death has been observed in other

FUS-ALS datasets reported in this study (Table 1), implying early time points are indeed

crucial for capturing dynamic changes in signaling/survival cascades and gene expression

events that forecast a cell’s fate [39–42]. Additional studies are required to explore how

the compensatory mechanisms at harvest time relate to the long-term progression of the

disease, where initial adaptations might eventually fail to counteract the damage.

While our results may provide new insights into an early transcriptomic regulation of

FRGs, identifying potential pathways by using the data generated by different laboratories,

they possess certain limitations and warrant further consideration. Firstly, this study relied

mainly on the GEO database, including analysis of previously published datasets. Thus,

the selection of datasets, lack of relevant clinical data/severity of the patients and batch-to-

batch variation may differ from the interpretations of previous experiments, most likely

due to potential biases caused by the small sample size, and more datasets are needed

to confirm our findings. Secondly, the FRGs are sourced from the manually updated

website FerrDb, and more relevant genes remain to be explored. Finally, our results are

based on bioinformatic analysis, without experimental validation of DEFRGs. Therefore,

future experimental studies are required to verify the reliability and significance of the

DEFRG results to explore the complex regulatory network of ferroptosis underlying FUS-

ALS pathogenesis.
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5. Conclusions

In the present study, we performed a comprehensive bioinformatic analysis of cur-

rently available RNAseq datasets of FUS-ALS human MN datasets. By this, we identified

31 ferroptosis-related DEGs and identified their participating gene functions and path-

ways. We also detected key hub genes that were closely associated with ferroptosis and

were mainly involved in signal transduction pathways and cell–cell adhesion functions.

However, results point more towards ferroptosis being not the main cell death pathway

activated—at least on transcriptional level—at the time point investigated. This does fit

to the recent failure of the CardinALS trial, which is a phase 2 study on a lipoxygenase

inhibitor in ALS (NCT05349721). In contrast, DEGs and GSEA enrichment analysis of gene

expression data in FUS MNs highlighted the importance of the apoptosis pathway, which

would also fit previous reports of increased apoptosis rates in FUS-ALS MNs [62]. Further

studies—including longitudinal ones—are needed to finally unravel the sequence of cell

death forms mainly contributing to MN death in (FUS-) ALS. Finally, future studies are

warranted to investigate cell death pathways on a protein level.
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