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Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal type of neurodegenerative disease marked
by progressive and selective degeneration of motor neurons (MNs) present in the spinal
cord, brain stem and motor cortex. However, the intricate molecular mechanisms under-
lying primary cell death pathways, including ferroptosis-related genes (FRGs) mediating
MN dysfunction in ALS, remain elusive. Ferroptosis, a novel type of iron-dependent
cell death with the accumulation of lipid peroxidation products, stands distinct from
apoptotic-related stress and other cell death mechanisms. Although growing advances
have highlighted the role of iron deposition, apoptosis and alteration of antioxidant sys-
tems in ALS pathogenesis, there is little data at the systems biology level. Therefore, we
performed a comprehensive bioinformatic analysis of bulk RNA-sequencing (RNA-seq)
data by systematically comparing the gene expression profiles from iPSC-derived MNs of
ALS patients and healthy controls using our datasets as well as from the GEO database to
reveal the role of ferroptosis-related gene alterations in ALS, especially in selective MN
vulnerability of FUSED IN SARCOMA (FUS) mutations. In this study, we first identified
differentially expressed genes (DEGs) between FUS mutant and healthy controls. Sub-
sequently, the crossover genes between DEGs and FRGs were selected as differentially
expressed ferroptosis-related genes (DEFRGs). Functional enrichment and protein—protein
interaction (PPI) analysis of DEFRGs identified that DNA damage, stress response and
extra cellular matrix (ECM) were the most significantly dysregulated functions/pathways
in FUS-ALS causing mutations compared to healthy controls. While GSEA analysis showed
enrichment of genes associated with apoptosis, the degree of ferroptosis and iron ion home-
ostasis/response to iron of FUS MNs was lower. Altogether, our findings may contribute
to a better understanding of the relevant role of cell death pathways underlying selective
vulnerability of MNs to neurodegeneration in FUS-ALS pathophysiology.

Keywords: ferroptosis; apoptosis; ferroptosis-related genes; ALS; iPSC; motor neuron;
differentially expressed genes; RNA-sequencing; gene expression omnibus

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive and irreversible neurodegener-
ative disease characterized by the selective loss of motor neurons (MNs) in the motor
cortex, brain stem and spinal cord, leading to progressive muscle weakness and death from
respiratory failure typically within 2-5 years of symptom onset. While the majority of ALS

Cells 2025, 14, 1417

https://doi.org/10.3390/ cells14181417



Cells 2025, 14, 1417

2 0f 18

cases are sporadic (sALS), the remaining 5-10% of cases are familial (fALS) with mutations
found in over 40 Mendelian inherited genes [1]. Among those, mutations in C9rf72, SOD1,
FUS, TARDBP and TBK1 are the most prevalent in European populations and have the
highest penetrance [2].These causative genes encode proteins with different functions, and
the pathogenesis has been implicated with defects in stress response, mitochondrial dys-
function, hyperexcitability, impaired protein homeostasis, aberrant RNA metabolism, and
impaired DNA repair [3,4]. In ALS, MN death is recognized to be both cell-autonomous,
driven by intrinsic cellular defects or genetic mutations, and non-cell autonomous, caused
by the external factors or detrimental signals from other cells (e.g., astrocytes, microglia) [2].

Despite extensive research studies having been performed, the etiology of ALS MN
degeneration, including the primary cell death mechanisms responsible for MN death,
remains poorly understood. This prevents the development of effective interventions and
precise therapy stratification. Cell death is a vital biological process that contributes to
development, homeostasis maintenance and disease prevention in multicellular organ-
isms. Cell death is broadly classified into two groups: programmed /regulated cell death
(energy-dependent) and non-programmed /necrotic cell death (energy-independent) [5,6].
Programmed cell death is defined by strictly regulated mechanisms and encompasses
orchestrated signaling cascades operated at the molecular level and further divided into
apoptotic or non-apoptotic programmed cell death. In contrast, non-programmed cell death
represents an uncontrolled biological process and occurs under the influence of accidental
cell damage [6,7]. MN death was initially implicated to be apoptotic, the most extensively
studied form of cell death, and triggered by the intrinsic pathway (internal stress such as
DNA damage, mitochondrial dysfunction leading to caspase activation), and the extrinsic
pathway (activation of death receptors, tumor necrosis factor or p75 neurotrophin recep-
tors) [8]. However, recent scientific investigations have reported an emerging repertoire of
non-apoptotic modalities of MN cell death, leading to the implication of ferroptosis in the
pathogenesis of various neurodegenerative diseases including ALS [9-13].

Ferroptosis, an iron- and lipid-peroxidation (LPO)-dependent form (and caspase-
independent form) of non-apoptotic cell death [14], is typically induced by the excessive
accumulation of iron and lipid reactive oxygen species (ROS) and/or inactivation of cellular
antioxidant systems, contributing to neuronal damage. More recently, abnormality of iron
homeostasis and anomalous accumulation of iron have been implicated in ALS patients
(motor cortex, spinal cord and cerebral regions) [14-18] and animal models [19-23], respec-
tively. Furthermore, a research study using induced pluripotent stem cell (iPSC)-derived
MNis from sALS patients showed the involvement of lipid peroxidation and ferroptosis
in MN cell death [24]. In addition, previous studies in ALS patients have demonstrated
that cell death triggered by lipid peroxides (iron-dependent regulated necrosis) resulted
in significant downregulation of endogenous mechanisms involved in protecting cells
against ferroptosis, such as the glutathione peroxidase 4 anti-oxidant defense checkpoint
(GSH/GPX#4), and has been associated with degeneration of MNs and disease progression
in ALS (sALS and fALS), suggesting a potential link between ALS and ferroptosis [11,16,25].
Consequently, the overexpression of GPX4 in transgenic SOD1 mice significantly mitigates
symptoms and improved motor neuron function [23,26]. Additionally, recent evidence
explored ferroptotic cell death in FUS-ALS, uncovering mitochondrial disturbances and
heightened vulnerability to ferroptosis in FUS P525L MNs [18].

Although few research studies have been carried out on complex mechanisms of
ALS and ferroptosis, their specific relationship on a more system biology level such as
transcriptomics remains unclear. Since the FUS core function is to regulate transcription, we
wanted to systematically investigate how much mutations in FUS affect ferroptosis-related
gene (FRGs) expression. In the present study, using iPSC-derived MNs expressing FUS-
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ALS mutations, we performed a comprehensive bioinformatics analysis by systematically
analyzing five RN A-sequencing (RNA-seq) datasets, including our dataset from the publicly
available gene expression omnibus (GEO) database. We employed integrated differential
expression gene (DEG) analysis to identify target genes and altered pathways related to
ferroptosis in MNs between FUS mutant and healthy controls (WT), which contributes to
further explore the pathomechanisms and selective MN vulnerability in FUS-ALS.

2. Materials and Methods
2.1. RNA-Seq Data Acquisition, Processing and Screening of DEGs

According to the main purpose of our study, publicly available RNA-seq datasets of
“ALS patients versus healthy controls” using a search criteria including keywords and/or
combinations relating to human, iPSC, MNs, ALS, bulk RNA-seq and FUS mutations
were downloaded from the NCBI GEO database (https:/ /www.ncbi.nlm.nih.gov/geo/,
accessed on 10 September 2024). With this inclusion criteria, we could only find four RNA-
seq datasets (studies 1 to 4) that could be used in combination with our study (study 5) for
integrated analysis. A summary of the datasets used is shown in Table 1. FASTQ files of
each study (see Table 1) were processed and analyzed using Partek™ Flow™ software, v11.0
following the standard pipeline within the software to quantify gene counts as described
in [27,28]. Briefly, FASTQ files were quality-checked (QA/QC), bases and reads with low
quality were filtered out and adaptors were trimmed from the raw data. Reads were
aligned to the reference human genome [hg38//GRCh38 (obtained from Ensembl assembly
v100)] using the STAR v2.7.8a aligner [29]. Quality control analysis was performed on
aligned reads to assess read quality using the QA /QC task. Processed aligned reads
were then quantified against the Ensembl v100 hg38/GRCh38 human reference genome
using the Expectation Maximization (EM) algorithm [30]. Gene counts obtained in each
individual RNA-seq study were further combined to identify DEGs across datasets. Next,
a noise reduction filter was applied to exclude genes considered as background noise,
and genes that were not expressed by any cell in the dataset were filtered out. Finally,
normalization and differential gene expression of the raw read counts were performed using
DESeq2 (v1.16.1) at the gene level [31] with a statistically significant threshold of Benjamini-
Hochberg false discovery rate (FDR) < 0.05 and |logpFC| > +1. The normalized datasets
were adjusted for batch effects using the General linear model method. The effectiveness of
batch effect removal was confirmed by conducting principal component analysis (PCA)
on the normalized counts of the dataset both before and after the batch correction was
eliminated, and this aids to visualize similarities and differences between the samples
in the dataset while identifying potential outliers. Statistically significant DEGs selected
from the integrated dataset were clustered in a hierarchical manner using the correlation
distance method and displayed in a heatmap. A volcano plot was used to visualize the
distribution of DEGs. All above analyses were generated using Partek™ Flow™ software,
v11.0. Differential expression analysis results are provided in Supplementary Table S1.

2.2. Identification of DEGs Associated with Ferroptosis

We retrieved a well-documented list of human FRGs (322 genes) including drivers,
suppressors or markers from the public Ferroptosis database (FerrDb V2; http://www.
zhounan.org/ferrdb, accessed on 24 December 2024) [32]. In addition, we also used the
GeneCards database (https:/ /www.genecards.org, accessed on 24 December 2024) [33],
which provides comprehensive information on human genes. The term “ferroptosis” was
used as the keyword for the search to identify genes related to ferroptosis (732 genes),
with a relevance score > 1, and protein-coding-related genes. Next, the targets retrieved
from the above two databases were merged, and the final list of FRGs was collected after
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removing duplicate genes. Next, we intersected the ferroptosis-related genes list with DEGs
to identify common ferroptosis-related DEGs (DEFRGs) between the FUS-ALS patients and
WT controls, and a total of 31 DEFRGs were screened out (as shown in the Supplementary
Table S2) using the Venn diagram and selected for further analysis. The list of FRGs and
DEFRGs is provided in Supplementary Table S3.

2.3. Functional Enrichment Analysis of DEGs and DEFRGs

To better understand the biological functions of DEGs and DEFRGs associated with
FUS-ALS and the related signaling pathways involved, we performed a functional enrich-
ment analysis using the database for annotation, visualization and integrated discovery,
DAVID version 6.8 (https:/ /david.ncifcrf.gov/summary.jsp, accessed on 30 April 2025,
enrichment testing across all GO functions, pathways) online platform [34]. GO enrichment
was applied to annotate and analyze genes involved in biological process (BP), molecular
function (MF), and cellular component (CC) gene function annotations. Pathway enrich-
ment analysis was carried out using Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Reactome databases. Functional analysis was carried out using default settings, and a
p-value < 0.05 was considered to be a statistically significant enrichment.

2.4. Protein—Protein Interaction Network Analysis

We generated a PPI network for DEFRGs using the Search Tool for the Retrieval of Inter-
acting Genes/Proteins (STRING) database (https:/ /string-db.org/) [35] with the minimum
required interaction score > 0.15. The nodes represent the DEGs/proteins, and the edges
indicate the predicted functional interactions (databases, high-throughput experiments,
co-expression/co-occurrence, text mining, neighborhood genes) between two proteins.
Subsequently, the PPI network was imported into Cytoscape 3.10.3 software [36] to build a
visual network and execute topological analysis. The key nodes were selected according to
the scoring of maximal clique centrality (MCC) by using the cytoHubba [37], a plug-in for
Cytoscape that explores important nodes and subnetworks by topological algorithms. Ten
genes scoring the highest were identified as hub genes in our study. These hub genes may
play essential roles in regulating ferroptosis and warrant further investigation.

2.5. Gene Set Enrichment Analysis (GSEA)

To study the functional alterations in pathways and biological processes of the samples
in the expression datasets, we performed gene set enrichment analysis (GSEA) [38] on
the normalized gene counts (DESeq2) of RNA-seq data (mutant and control) using the
GSEA function in Partek™ Flow™ software, v11.0. The used gene sets for testing were the
GO-term-derived gene set database (biological process, molecular function, and cellular
component) and KEGG pathway database. The metric for ranking gene parameters was
signal-to-noise, and the significant gene sets/pathway enrichment was identified by the
normalized enrichment score (I NES| > 1) and p < 0.05.

2.6. Statistical Analysis

The general pipeline for combined RNA-seq analysis used in this study, including
alignment, quantitation, normalization and differential gene expression analysis as well as
statistical analyses were performed on Partek™ Flow™ software, v11.0 to aid the visualiza-
tion and interpretation of the expression patterns of DEGs. When appropriate, p-values
(p-value < 0.05) were calculated and adjusted for multiple testing using FDR correction
statistical methods for DEGs using Partek™ Flow™ software, v11.0. p-values/FDRs < 0.05
and logyFC > 1 or logo FC < —1 were considered as statistically significant thresholds for
the identification of DEGs. Unpaired, two-tailed Student’s t-tests were performed using
GraphPad Prism v9.4.1. software to analyze gene expression levels.
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3. Results
3.1. Data Processing and Identification of DEGs

We searched relevant RNA expression profiles from the GEO database and focused
our analysis on iPSC-derived spinal MN studies from FUS-ALS patients and age-matched
WT controls. As a result, five gene expression datasets, GSE77702 [39], GSE94888 [40],
GSE168831 [41], GSE203168 [42] and GSE272827 [43], were collected and considered for
further analysis (Table 1). The workflow of the study is shown in Figure 1. After background
noise correction, all the datasets were pooled, followed by normalization. The PCA plot
demonstrated a clear separation of individual FUS-ALS datasets from the remaining groups
(Figure 2A). The batch effect across ALS samples was removed effectively using PCA,
highlighting that no such separate clusters were observed (Figure 2B). The combined dataset
obtained after processing and batch effect correction gave rise to an initial dataset consisting
of 33 samples (17 ALS samples and 16 WT controls) and 36,828 genes, henceforth referred
to as the final dataset. Next, differential expression analysis was performed between FUS-
ALS and WT control samples to identify DEGs based on the threshold of FDR < 0.05 and

llogoFC (Fold Change) | > 1. A total of 672 DEGs were identified after removing genes

without the HGNC annotation ID, containing 328 upregulated and 344 downregulated
genes, which were visualized using a volcano plot and heatmap (Figure 2C, displayed in
Supplementary Table S1). The volcano plot showed the distribution of gene expression
between FUS-ALS and control groups (Figure 2D), whereas the clustered heatmap of DEGs
revealed the distinct patterns of upregulated or downregulated genes across the samples
grouped by genotype (Figure 2E).

Select RNA expression profile of FUS-ALS iPSC-derived MNs from GEO database
(GSET77702, GSE94888, GSE168831, GSE203168, GSE272827)

4 FerrDb database
Processing of raw
\ 4

GSEA analysis and >
identification of core genes | SEQUENice da“? (FA.‘STQ) L
normalization
Ferroptosis-related genes
(FRGs)
\4 'y
Identification of differentially expressed
genes (DEGs)
GeneCards
A4
Selection of differentially expressed FRGs
(DEFRGSs)
Y
\ 4 \ 4
Functloanﬁell@r;;'lschment Protein-protein interaction
(GO and KEGG) network (PP')
A 4
Identify key genes

Figure 1. The workflow of this study. ALS, amyotrophic lateral sclerosis; DEG, differentially expressed
genes; FRG, ferroptosis-related gene; DEFRGs, differentially expressed ferroptosis-related genes; GO,
gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein—protein interaction.
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Table 1. Summary of five gene expression profiles derived from GEO database.
S le Si
Stud GEO Dataset Platform Mutation Gender (Age) i slesi) Library Type Layout DIV References
y 2] ALS/Control ry 1yp Yy
GPL11154
Study 1 GSE77702 Tlumina FUS®21G N/A 3/2 PolyA Single 34 [39]
HiSeq 2000
GPL16791
Study 2 GSE94888 MNumina FUSP525L Femﬁtl/epggz 3/3 Ribo-zero Paired 19 [40]
HiSeq 2500 (FUS )
FUSY: Female (45),
FUSR#9QsX527 Male (64), Male (46)
(c.1483delC)
GPL24676 framoshift FUSRA%QIX527 (¢ 1483delC),
Study 3 GSE168831 Illumina FUS Asph03Thr s 27 frameshift: Male (26) 6/6 PolyA Paired 35 [41]
NovaSeq 6000 FLISASP502Thr{S*27
(c.1504delG),
frameshift (c.1504delG), frameshift:
Male (19)
GPL20301 .
Study 4 GSE203168 Tlumina FUSH17Q ‘2}?8?% 56[2' . I??\Ihirzlts) 2/2 Ribo-zero Single 30 [42]
HiSeq 4000 0436 (age: N/A)
Isogenic control:
FUSWT-eGFPhet: Female (58)
GPL18573 I . tant:
Study 5 GSE272827 Tllumina FUSP525L sogenic mutant: 3/3 PolyA Single 21 [43]
(our study) NextSeq 500 FUSP5?5L_eGFphet
FusR521C het
Female (58)

DIV: days in vitro.
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Figure 2. Transcriptomic data analysis. (A) Principal component analysis (PCA) of samples before
batch effect removal and (B) after batch-effect removal, highlighting similarities and differences in the
gene expression between the various FUS samples compared to WT samples. In the three-dimensional
PCA plot, each sample is represented as a sphere/square; the closer the spheres/squares in the
spreadsheet, the higher the similarity among sample groups. A total of 33 types of samples from
5 different datasets are shown on this figure; different colors indicate different datasets, while
different symbols (sphere/square) represent sample attribute types (WT; sphere and FUS mutant;
square). (C) Statistics on the results of differentially expressed genes (DEGs) in the FUS samples.
(D) Volcano plot displaying the distribution of DEGs between FUS mutant and WT controls (p < 0.05,
FDR < 0.05 and log,Fold Change) > 1 or logy(Fold Change) < —1). (E) Heatmap representing the
expression profile of the 50 DEGs identified by FUS mutant versus WT controls (p < 0.05, FDR < 0.05,
[logoFC | > 1). Expression values sorted according to sample (rows) and gene (columns), where the
color change from red to blue suggests gene expression changing from high to low.

3.2. Functional Enrichment Analysis of DEGs

To better understand the underlying potential biological functions, we performed
GO and pathway (Reactome and KEGG) enrichment analysis on the 672 DEGs. The GO
analysis results (p-value < 0.05) showed that upregulated DEGs were significantly enriched
in various biological processes, including regulation of transcription by RNA polymerase
II and DNA repair and chromatin organization. DEGs were more likely to be involved in
the nucleus, nucleoplasm and chromatin complex in the cellular components category. In
terms of molecular functions, DEGs were mainly involved in DNA binding functions. The
top six of the biological process, cellular component and molecular function enriched terms
are shown in Figure 3A, Supplementary Table S2. Pathway enrichment analysis revealed
significant enriched terms, including gene expression, DNA replication, RNA polymerase
II transcription and cell cycle pathway (Figure 3B, Supplementary Table S2). Considering
the MNs as the main focus of this study, the comprehensive enrichment analysis indicated
crucial molecular alternation in DNA repair and relevant functions in FUS-ALS MNs.
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Figure 3. Functional enrichment analysis of DEGs. (A) Bar plot of gene ontology (GO) enrichment
analysis of upregulated DEGs. (B) Pathway enrichment analysis of upregulated DEGs. (C) Bar
plot of gene ontology (GO) enrichment analysis of downregulated DEGs. (D) Pathway enrichment
analysis of downregulated DEGs. GO enrichment analysis was based on the topmost significant
enriched terms in each of the biological process (BP), cellular component (CC) and molecular function
(MF) entries (p < 0.05). (E) Gene set enrichment analysis (GSEA) was performed using normalized
counts from the DESeq2 output ranked list in FUS-ALS datasets (p < 0.05 was considered statistically
significant). The top three most significantly enriched gene sets were shown to be positively and
negatively correlated with the gene counts based on NES value. The y-axis represents the enrichment
score for the overall gene set, and on the x-axis are genes (vertical black bars) represented in gene sets.

For the downregulated DEGs, significant biological processes included protein folding
in endoplasmic reticulum (ER), ion membrane transport and synaptic transmission. The
cellular component enrichment analysis showed important terms, including organelle
membrane, ER and extracellular exosome. Among the molecular functions, the most
enriched functions were ion binding, ion channel activity and transporter binding. The
significant GO-enriched terms are displayed in Figure 3C. The KEGG analysis indicated
that DEGs participated in the cell adhesion pathway, lysosome and metabolic pathways
(Figure 3D, Supplementary Table S2).
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3.3. GSEA Analysis in FUS-ALS

To further explore the impact of gene expression levels on FUS-ALS phenotypes (FUS
mutant and WT controls), we used the GSEA algorithm to investigate the relationship
between gene expression in the combined dataset and the biological processes, cellular
components, molecular functions and KEGG pathways involved (p < 0.05) (Supplementary
Table S3, Figure 3E, Supplementary Figures S1 and S2). The results demonstrated that genes
in the combined dataset were significantly enriched in cellular functions such as DNA
repair, cell cycle and chromosome organization pathways, and positively correlated with
the expressed genes, while cellular metabolism, cell adhesion, iron ion homeostasis, iron
ion transport, ubiquitination, synaptic/neuronal and organelle functions were negatively
correlated with the expressed genes. In addition, the GSEA results also revealed that the
ferroptosis pathway enrichment was inhibited in the FUS MNs (ferroptosis: NES = —1.34,
p = 0.27, leading edge size = 14; VDAC2, FTH1, SLC3A2, ATG7, MAP1LC3C, SLC7A11,
SLC39A14, MAP1LC3B, ACSL1, GCLM, PRNP, ACSL4, TF and MAP1LC3B2), whereas
the apoptosis-enriched gene set, including the p53-signaling pathway, neuron apoptosis
process, ROS levels and antioxidant activity, were mostly upregulated (apoptosis: NES
=0.74, p = 0.86, leading edge size = 29) (Figure 3E, Supplementary Figures S1 and S2
and Supplementary Table S3). However, most likely due to the small sample set size, the
ferroptosis- and apoptosis-related gene set missed statistical significance in the enrichment
analysis. Nevertheless, these results suggested that there was a significant difference
between the FUS mutant and WT control groups at the transcriptional level, and the
DNA repair as well as the cell death-related terms including ferroptosis/iron homeostasis
pathways were markedly changed in FUS-ALS. We hypothesize that ferroptosis may play
a certain role in the disease progression of FUS-ALS. Thus, to substantiate the role of FRGs
differentially expressed in the FUS MNs, the DEGs obtained from GEO gene expression
datasets were intersected with the ferroptosis gene set to identify DEFRGs. The detailed
DEFRG results are presented below and in Supplementary Table S4.

3.4. Identification of Differentially Expressed Ferroptosis-Related Genes (DEFRGs)

To deepen the analysis on a potential relationship between ferroptosis and FUS-ALS,
322 and 732 FRGs were collected from FerrDb and GeneCards databases, respectively. After
removing duplicate genes, a total of 896 FRGs were obtained by combining the targets
retrieved from the above two databases. Using a Venn plot, we intersected FRGs with
the DEGs in FUS-ALS and identified 31 overlapped DEFRGs, including 16 upregulated
and 15 downregulated genes for further analysis (Figure 4A). The expression levels of
31 DEFRGs in FUS-ALS are shown in the heatmap (Figure 4B). The violin plot shows
the expression patterns of 31 significantly DEFRGs, which were expressed differentially
between FUS mutant and WT control samples (Figure 4C,D). Details of overlapping genes
(out of 31 DEFRGs) from the FerrDb, including six drivers and five suppressors, are
presented in Table 2. All the FRGs and DEFRGs are listed in Supplementary Table 54.

Table 2. The 11 overlapping genes (Up/Down) from the FerrDb and their role in ferroptosis.

Type Genes
Driver CDH1 (Down), DDR2 (Down), ACSL4 (Down), USP11
(Down), ZEB1 (Up), and MYCN (Up)
Suppressor TFAP2A (Up), RARRES? (Up), PTPN18 (Up), LAMP2

(Down), and VCP (Down)
Marker None
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Figure 4. Identification of differentially expressed ferroptosis-related genes (DEFRGs). (A) Venn
diagram identifying the 31 overlapping DEFRGs between DEGs in GEO datasets (672) and ferroptosis-
related genes (322) in the FerrDB and GeneCard (732) databases, respectively. FRGs, ferroptosis-
related genes; DEFRGs, differentially expressed ferroptosis-related genes. (B) Heatmap displaying the
expression of 31 DEFRGs in FUS and healthy controls (WT). (C,D) Violin plots illustrating the gene
expression levels of 31 DEFRGs between FUS mutant and WT controls. (C) A total of 16 upregulated
genes (D) 15 downregulated genes, blue for WT group, and red for FUS mutant group; the X-axis
shows the ferroptosis-related genes, and the Y-axis represents the expression level of genes. Student’s
t test was employed to assess the gene expression values between the mutant and WT groups. The
asterisks indicate that the differences are statistically significant (* p < 0.05, ** p < 0.01).

3.5. Enrichment Analysis of DEFRGs

To better comprehend the different pathways and biological functions of the 31 DEGs
associated with FRGs in FUS-ALS, we performed GO annotation and KEGG enrichment
analysis. GO enrichment analysis revealed that the biological process was primarily
enriched in response to ROS, glucose starvation and RNA processing, while downreg-
ulated genes were mainly involved in protein import and protein catabolic processes.
The cellular component comprised the nucleus/nucleoplasm (represented terms) and
extracellular exosome (downregulated). Furthermore, the enriched molecular function
contained DNA /RNA binding, while the depleted terms included protein domain bind-
ing and ubiquitin protein-ligase binding. The top six most significantly enriched terms
in each of the categories were identified for the GO visualization bar graph (Figure 5A,
Supplementary Figure S3). In addition, the pathway enrichment analysis revealed that
DEFRGs were linked to extracellular matrix (ECM) and post-translational modifications
(Figure 5B, Supplementary Figure S3), suggesting precise regulation of ferroptosis at mul-
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tiple levels. The results obtained from GO/pathway enrichment analysis are shown in

Supplementary Table S5.
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Figure 5. Functional enrichment analysis and PPI analysis of DEFRGs. (A) GO enrichment analysis
of DEFRGs based on the top significantly enriched terms in each of the BP, CC and MF groups.
(B) Pathway enrichment analysis of DEFRGs based on the top enriched pathways. The X-axis repre-
sent p-values, and the Y-axis indicates the GO/pathway terms. (C) Protein—protein interaction (PPI)
network of the 31 candidate DEFRGs, in which the nodes represent proteins, and the edges represent
the interaction of proteins. A thicker line indicates stronger data evidence, and genes/proteins
of a darker color were distinguished using color shading from darker to lighter, according to the
score (topological parameters). (D) Top 10 hub DEFRGs identified by the maximal clique centrality
(MCC) algorithm using Cytoscape (cytoHubba plugin); the deeper the color, the higher the gene rank.
GO, gene ontology; BP, biological process; CC, cellular component; MF, molecular function. For all
analyses, p < 0.05 was considered statistically significant.

3.6. Protein—Protein Interaction (PPI) Network Analysis of DEFRGs

To further explore the interactions of these identified 31 DEFRGs, we performed PPI
network analysis. We obtained a PPI network consisting of 31 nodes and 110 edges, where
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network nodes represent proteins, and the edges represent protein—protein associations.
The results showed that the 31 DEFRG decoded proteins were closely interconnected in
the network (PPI enrichment p-value = 1.74 x 10~%) (Figure 5C), and these ferroptosis-
related proteins were involved in biological functions such as the extracellular matrix and
membrane bound organelle, suggesting that the mechanism related to ferroptosis may play
an important role in the pathogenesis of FUS-ALS. Additionally, we have also identified
several hub genes that have a high degree in the PPI network and which are ranked from
high to low as follows, CDH1, HSPA5, CDH2, ZEB1, MYCN, HNRNPA1, LMNB1, CTSB,
LAMP? and ACSL4 (Figure 5D), highlighting that these genes played an important role
in the core network. The interactions were visualized using Cytoscape software, and
the PPI analysis results as well as scores of the DEFRGs (MCC algorithm) are listed in
Supplementary Table S6.

4. Discussion

Although multiple mechanisms have been implicated in the pathogenesis of ALS,
including glutamate excitotoxicity, mitochondrial dysfunction, oxidative stress, immune
dysregulation and impaired axonal transport [44], underlying pathomechanisms causing
MN degeneration and cell death pathways are poorly understood. Significant advance-
ments have been made in microarray /RN A-sequencing analysis to identify gene expression
profiles in different cells/tissues and contexts, thus helping to reveal important biological
pathways under different conditions [28,45,46]. However, there have been few transcrip-
tomic studies focused specifically on ferroptosis-associated genes and pathways in ALS.

For doing so, we compared our own and different available datasets to increase the
number of biological replicates and generalizability. With that, we systematically explored
the role of the ferroptosis-related gene signature in FUS-ALS. Briefly, we collected five
comparable RNA-seq datasets from the GEO public database and performed integrated
bioinformatic analysis to specifically look for mRNAs associated with ferroptosis and their
related pathways that are differentially expressed in MNs from iPSC-derived FUS mutant-
ALS patients and WT controls. A total of 672 common DEGs that are combined in five RNA-
seq datasets were identified between FUS mutant and WT control MNs. The enrichment
analysis revealed that DEGs were primarily misregulated in gene expression (transcription),
organelle homeostasis, ER-protein folding and cell adhesion pathways. The accumulation
of ROS is an important mechanism that can be the cause or consequence of mitochondrial
dysfunction of MNs and can promote damage to the cell/organelle membrane, which
leads to ferroptosis and other programmed cell deaths, such as apoptosis. Indeed, in GSEA
analysis of RNA-seq data, we found that key genes involved in DNA repair, p53 signaling,
apoptosis, antioxidant activity, cellular response to ROS and stress-activated protein kinase
signaling cascade were mostly enriched with higher enrichment scores, whereas gene sets
related to mitochondrial function, cellular metabolism and ubiquitin/proteasome-mediated
protein catabolic process were downregulated in FUS mutant MNs. These results suggest
that increased cellular stress, caused by an imbalance between ROS and antioxidant defense
systems, may induce apoptosis, and that played an important role in the pathogenesis
of FUS-ALS.

Several studies have reported that FUS plays a crucial role in various cellular processes
such as proteostasis, DNA repair (nuclear and mitochondrial), mitochondrial functions
and RNA splicing or RNA metabolic processes [47-49]. Abnormal expression of FUS has
been reported to exacerbate the accumulation of DNA damage, and p53 is involved in
activating DNA repair pathways. However, in case of prolonged DNA damage that is
beyond repair, the p53 promotes neuronal apoptosis by increasing the transcription of
pro-apoptotic genes [47,49-51], suggesting a crucial role of FUS in the DNA repair-induced
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apoptosis mechanism in ALS pathology. Besides that, in a GSEA analysis, the degree of
ferroptosis and iron ion homeostasis/response to iron of FUS MNs was lower, indicating
that the genes related to ferroptosis were transcribed at lower levels compared to a WT
control group. This downregulation of ferroptosis genes (a gene set) in the gene expression
dataset suggests a decrease in the activity of ferroptosis (or less prevalent) in the FUS MNSs,
and this depletion could be due to multiple factors, including altered cellular metabolism
or signaling pathways, various types of external stimuli, increasing antioxidant defenses
and reducing iron availability, and even from changes in gene expression regulation that
are altered in response to the FUS mutation, which was clearly evident from our GO/GSEA
enrichment analysis of DEGs.

To further investigate a putative transcriptional activation of ferroptosis, we inter-
sected the above-mentioned DEGs with FRGs collected from FerrDb and GeneCards. By
this, we identified 31 potential DEGs (16 upregulated and 15 downregulated) related to
ferroptosis (DEFRGs) between FUS mutant and WT controls. To understand the role of
these DEFRGs in FUS-ALS, we further carried out GO/pathway enrichment and PPI
analysis. The results of this analysis showed that the regulation of multiple biological
functions and pathways, including increased ROS levels, regulation of gene expression
(RNA polymerase II-specific) and stress response, were altered, which was in accordance
with previous studies on ALS [52-54]. Taken together, the potential biological functions of
DEFRGs in FUS-ALS involved the regulation of various signaling pathways and processes.
The identified pathways might be triggered by upstream pathways, rather than being the
primary pathway affected (e.g., ferroptosis) activated by a unique stimulus or response
to a specific stress signal. Notably, the GSEA analysis of gene expression data showed
that the ferroptosis pathway, including response to cellular iron/iron homeostasis, was
downregulated in FUS MN:ss. It should be noted, DEFRGs also pointed towards a down-
regulation of ferroptosis (upregulated suppressor of the ferroptosis; downregulated driver
of the ferroptosis). We assume that the collective effect of misregulated suppressors and
drivers of ferroptosis may induce the decreased expression of ferroptosis at an early time
point, while this might be different at later time points, which needs future investigations.

While a considerable amount of work has focused upon the metabolic adaptations that
are found in FUS MNs and which enable specific adaptations, including apoptosis, metabo-
lites, iron homeostasis and the need for protein homeostasis, the precise vulnerabilities of
neuronal populations arising from these adaptations or alterations under physiological
conditions to cell death remain poorly understood. In this context, through our gene ex-
pression studies of FUS-ALS datasets, we provided preliminary clues about the underlying
cell death pathways to uncover the sensitivities of MNs to ferroptosis. On one hand, our
enrichment analysis has revealed that DEGs in FUS MNs were primarily enriched in apop-
tosis or apoptosis-mediated functions. On the other hand, ferroptosis (or DEFRGs) showed
reduced expression levels without significant enrichment of classical ferroptosis markers
(e.g., GPX4) or ferroptosis-related processes, which suggest that FUS MNs are less prone to
ferroptosis, at least at the time point of analysis. Despite the differences between the two
cell death pathways, accumulating evidence suggests that ferroptosis and apoptosis can be
induced by similar stress signals (e.g., ER stress or oxidative stress) and shared common
regulators, such as p53. They may occur in the same damaged cells either sequentially or
simultaneously and can even through their combined actions induce cell death [55,56]. As
an essential gene, p53 is required not only for transcription of the pro-apoptotic genes to
various stress signals but also for the suppression of the anti-ferroptosis protein solute car-
rier family 7 member 11 (SLC7A11, a subunit of the cysteine—glutamate antiporter), which
plays key role in cystine uptake and GSH metabolism [57]. Fitting to this, in GSEA analysis
we identified upregulation of p53-signaling pathway and also found that the SLC7A11 gene
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was downregulated in the ferroptosis gene set. Regulation of ferroptosis by p53 is context-
dependent (e.g., gene mutation and cell-type), can promote the presence of ferroptosis
by inhibiting SLC7A11 transcription, and can also reduce cell sensitivity to ferroptosis by
acting on transcription-independent mechanisms [58]. A recent study showed that in cancer
cells p53 binds to and sequesters pro-ferroptotic enzyme dipeptidyl-peptidase-4 (DPP4)
within the nucleus, forming an inactive complex, thus preventing its interaction with NOX1
(NADPH oxidase 1) and decreasing lipid peroxidation/ferroptosis [59]. In other contexts,
p53 activation can lead to the expression of its downstream genes involving the cell cycle
inhibitor CDKN1A/p21 pathway, which in turn increases intracellular GSH/GPX4 levels to
prevent lipid peroxidation and reduce ferroptosis sensitivity [60]. Further, in tumor cells
p53 also regulates ferroptosis sensitivity by upregulating the expression of a polyamine
metabolism-related enzyme, spermidine/spermine N-acetyltransferase 1 (SAT1) [61]. How-
ever, the exact underlying mechanism of p53 mediating reduced ferroptosis sensitivity
in the above pathways is unknown and needs to be further elucidated. Further, in our
differential enrichment analysis, gene expression and the stress response pathways were
found in DEFRGs, while DEGs associated with the DNA repair/p53 and with ubiquitin
proteasomal response were connected to response to apoptosis and are consistent with the
role of these specific pathways in each respective death program [16]. Although, the cellular
consequences of ferroptosis regulation by p53 could be complex, cell type-specific, bidirec-
tional (positive or negative regulation), and context-dependent with distinct mechanisms,
p53 was proposed to play a critical regulatory role in the crosstalk between ferroptosis
and apoptosis [56,58]. Thus, p53 might be involved in activating DNA repair pathways
(e.g., upregulation of DNA damage response genes or during extensive DNA damage) and
may either trigger ferroptosis to help remove dead/damaged MNs or reduce the sensitivity
of MNs to ferroptosis and promote normal cell survival, especially during the mild stress
or injury. Our study’s main focus is to systematically investigate cell death activation
pathways as well as cell adaptability in FUS mutant neurons to resist early forms of stress
before MN loss is more obvious. Moreover, our own FUS-ALS datasets are from early
time points where cells are viable before any visible signs or symptoms of cell damage
occur [43,47,62]. Similarly, no early phase of cell stress or death has been observed in other
FUS-ALS datasets reported in this study (Table 1), implying early time points are indeed
crucial for capturing dynamic changes in signaling/survival cascades and gene expression
events that forecast a cell’s fate [39-42]. Additional studies are required to explore how
the compensatory mechanisms at harvest time relate to the long-term progression of the
disease, where initial adaptations might eventually fail to counteract the damage.

While our results may provide new insights into an early transcriptomic regulation of
FRGs, identifying potential pathways by using the data generated by different laboratories,
they possess certain limitations and warrant further consideration. Firstly, this study relied
mainly on the GEO database, including analysis of previously published datasets. Thus,
the selection of datasets, lack of relevant clinical data/severity of the patients and batch-to-
batch variation may differ from the interpretations of previous experiments, most likely
due to potential biases caused by the small sample size, and more datasets are needed
to confirm our findings. Secondly, the FRGs are sourced from the manually updated
website FerrDb, and more relevant genes remain to be explored. Finally, our results are
based on bioinformatic analysis, without experimental validation of DEFRGs. Therefore,
future experimental studies are required to verify the reliability and significance of the
DEFRG results to explore the complex regulatory network of ferroptosis underlying FUS-
ALS pathogenesis.
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5. Conclusions

In the present study, we performed a comprehensive bioinformatic analysis of cur-
rently available RNAseq datasets of FUS-ALS human MN datasets. By this, we identified
31 ferroptosis-related DEGs and identified their participating gene functions and path-
ways. We also detected key hub genes that were closely associated with ferroptosis and
were mainly involved in signal transduction pathways and cell-cell adhesion functions.
However, results point more towards ferroptosis being not the main cell death pathway
activated—at least on transcriptional level—at the time point investigated. This does fit
to the recent failure of the CardinALS trial, which is a phase 2 study on a lipoxygenase
inhibitor in ALS (NCT05349721). In contrast, DEGs and GSEA enrichment analysis of gene
expression data in FUS MNs highlighted the importance of the apoptosis pathway, which
would also fit previous reports of increased apoptosis rates in FUS-ALS MNs [62]. Further
studies—including longitudinal ones—are needed to finally unravel the sequence of cell
death forms mainly contributing to MN death in (FUS-) ALS. Finally, future studies are
warranted to investigate cell death pathways on a protein level.
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