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Multicenter evaluation of label-free
quantification in human plasma on a high
dynamic range benchmark set
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Human plasma is routinely collected during clinical care and constitutes a rich

source of biomarkers for diagnostics and patient stratification. Liquid

chromatography-mass spectrometry (LC-MS)-based proteomics is a key

method for plasma biomarker discovery, but the high dynamic range of

plasma proteins poses significant challenges for MS analysis and data pro-

cessing. To benchmark the quantitative performance of neat plasma analysis,

we introduce a multispecies sample set based on a human tryptic plasma

digest containing varying low level spike-ins of yeast and E. coli tryptic pro-

teome digests, termed PYE. By analysing the sample set on state-of-the-art LC-

MS platforms across twelve different sites in data-dependent (DDA) and data-

independent acquisition (DIA) modes, we provide a data resource comprising

a total of 1116 individual LC-MS runs. Centralized data analysis shows that DIA

methods outperform DDA-based approaches regarding identifications, data

completeness, accuracy, and precision. DIA achieves excellent technical

reproducibility, as demonstrated by coefficients of variation (CVs) between

3.3% and 9.8% at protein level. Comparative analysis of different setups clearly

shows a high overlap in identified proteins and proves that accurate and

precise quantitative measurements are feasible across multiple sites, even in a

complex matrix such as plasma, using state-of-the-art instrumentation. The

collected dataset, including the PYE sample set and strategy presented, serves

as a valuable resource for optimizing the accuracy and reproducibility of LC-

MS and bioinformatic workflows for clinical plasma proteome analysis.

Human blood and blood-derived components (i.e., serum and plasma)

reflect an individual´s health state and are routinely used for in vitro

diagnostics, often referred to as a liquid biopsy, to either monitor,

detect, predict, or rule out diseases. Plasma, the liquid blood compo-

nent, is obtained by removing cellular material from whole blood

through centrifugation in the presence of anti-coagulants such as

heparin, ethylenediaminetetraacetic acid (EDTA), or sodium citrate.

Plasma and serum are the most collected biofluids globally, easily

accessible and routinely taken from thousands of patients daily. As

such, they are valuable sources of (bio)markers reflecting the states of

various disorders and illnesses and has become the focus of pharma-

cological, biomedical, and clinical pursuits.

The vast majority of biological processes are controlled and car-

ried out by proteins. Liquid chromatography-mass spectrometry (LC-

MS) has evolved as the leading technology for investigating proteins

and analysing entire proteomes across diverse biological systems,

making it a powerful tool for (protein) biomarker discovery1,2. Within

their detection limits, MS-based proteomic approaches allow for the

unbiased and comprehensive characterization of all proteins in a sys-

tem with high analytical specificity. Most of these workflows employ a
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bottom-up approach, where sample proteins are first digested in vitro

with sequence-specific proteases, such as trypsin, to generate peptides

for analysis. Despite tremendous technological advances in the field of

MS over the past two decades, plasma proteome analysis by this

technology remains challenging due to the extremely high dynamic

range of plasma proteins, which spans over 11 orders of magnitude3,4.

Albumin, the most abundant plasma protein at a concentration of

~70mg/mL, constitutes around 55% of the total plasma protein con-

tent, while the 22most abundant proteins collectively account for 99%

of the overall plasma protein mass3,4. In MS-based bottom-up pro-

teomic workflows, the majority of quantified peptide intensities arises

from these highly abundant plasma proteins, significantly hindering

the detection and quantification of peptides derived from lower-

abundance proteins. As a result, in typical MS analyses of neat plasma,

only a few hundred classical plasma proteins can be reliably detected

and quantified acrossmultiple studies4,5. These include proteins with a

functional role in blood such as albumin, apolipoproteins, immu-

noglobulins, and acute phase proteins, as well as members of the

coagulation cascade. Lower-abundance proteins, including those

derived from tissue leakage or signaling proteins such as cytokines,

often fall outside the dynamic range of detection spanning ~4–5 orders

of magnitude on most of the current generation instrument

platforms4. Even when detected, quantifying low-abundant plasma

proteins remains challenging, as they are prone to lower signal-to-

noise ratios, poor ion statistics, and missing (peptide intensity) values

across runs, all of which contribute to higher variance and reduced

quantitation precision and accuracy6–8.

Over the past two decades, significant efforts have been made to

reduce thedynamic rangeof plasma samples andenhance thedepthof

plasma proteome coverage. Strategies such as immunoaffinity-based

depletion of abundant proteins9–11, selective precipitation12,

nanoparticle-assisted enrichment13–15 and magnetic bead-based isola-

tion of plasma extracellular vesicles16 enabled the identification of up

to ~4500 proteins in plasma. Despite their advantages, these methods

are often constrained by high costs, limited throughput, and

technique-specific biases17,18. Consequently, analysis of neat plasma

continues to be a commonly used approach in proteomic studies.

In clinical contexts, achieving accurate and reproducible quanti-

fication is essential. The discovery and verification of potential bio-

markersdependheavily on the dynamic range, accuracy, andprecision

of quantitative measurements across large cohorts, multiple plat-

forms, and study centers. Over the past years, several intra- and

interlaboratory studies have addressed this issue using distinct

benchmark sample sets to assess quantitative reproducibility of dif-

ferent (label-free) proteomic LC-MS workflows or data analysis

tools7,8,19–23. Such benchmark samples can be generated by spiking

synthetic peptides or proteins into a matrix at known amounts20–23,

mixing whole proteomes at distinct ratios7,8,19,24–26 or a combination of

both27. Common to these sample sets is that they represent a ground

truth and allow either to optimize different steps of an LC-MS work-

flow, assess its qualitative and quantitative performance24, or conduct

cross-center comparisons20,28. Hence, these samples are widely used,

e.g., for comparing software tools and data analysis workflows, as they

facilitate the selection of the best-performing quantitative data ana-

lysis pipeline for distinct LC-MS setups6,8,29. Moreover, they allow the

evaluation of novel MS hardware30, facilitate the benchmarking of

software for data analysis31,32, and help optimize (data) processing

algorithms to improve quantitative precision and accuracy7. Addi-

tionally, they are a valuable tool for multilaboratory20 and cross-

platform comparisons26,29,30, providing a snapshot of the technological

landscape and workflow performance at the respective study time-

point. Recently, Fröhlich et al.25 introduced a mixed proteome dataset

designed to incorporate real-world inter-patient heterogeneity,

enabling the benchmarkingofdata-independent acquisition (DIA) data

analysis workflows in clinical settings, particularly for formalin-fixed

paraffin-embedded tissue samples. However, a ground truth bench-

mark set specifically for assessing quantitative accuracy and precision

in neat plasma analysis has yet to be established. Recently, the

CLINSPECT-M consortium, part of the German MSCoreSys clinical

proteomics initiative, initiated a round-robin study among its six

proteomic laboratories assessing current best practices for sample

preparation and LC-MSmeasurement for clinically relevant body fluids

such as plasma and cerebrospinal fluid33.

In this work, we complement this effort by evaluating the quanti-

tative performance of neat plasma analysis across twelve different

partner sites of the MSCoreSys clinical proteomics research consortium

(https://www.mscoresys.de/), including different state-of-the-art LC-MS

instrument platforms. To this end, we introduce a benchmark set of six

samples based on a human tryptic plasma digest containing varying

amounts of tryptic digests of yeast and Escherichia coliproteomes (PYE).

The PYE benchmark set is an evolution of the hybrid proteome sample

set initially described by Kuharev et al.19 and Navarro et al.7, addressing

the challenges posed by the high dynamic protein range typical for neat

plasma. Each participating site received and measured the PYE sample

set on their respective LC-MS platforms using data-dependent acquisi-

tion (DDA)- and/or DIA-based methods. Importantly, no particular

guidelines, protocols, or restrictions were enforced. All generated raw

data have been centrally analysed through a unified pipeline, using

MaxQuant34,35 for DDA and DIA-NN36 for DIA data. The resulting dataset

clearly demonstrates that accurate and precise protein quantification

applying state-of-the-artMS-based proteomics is achievable, evenwithin

the complex plasma matrix, across different instrument platforms and

multiple sites when applying DIA-based approaches.

Results
Study design and PYE benchmark sample set
The aim of the present study was to assess and benchmark qualitative

and quantitative reproducibility as well as the accuracy and precision

across multiple sites and instrument platforms using a benchmark

sample set that addresses the challenges of protein dynamic range in

neat plasma. To this end, we defined amultispecies sample set based on

a human tryptic plasma digest, containing varying spike-in levels of

tryptic-digested yeast and E. coli (PYE) proteomes. The PYE benchmark

set comprises six samples in total: PYE1 A and B, PYE3 A and B, PYE9 A

and B. In these samples, human plasma digest serves as a high dynamic

range background, whereas low-level spike-ins of E. coli and yeast tryptic

peptides mimic regulated proteins between two samples, A and B,

allowing to evaluate precision and accuracy of label-free quantification.

In samples PYE1 A and B, human plasma proteins account for 90% of the

total protein mass, and yeast and E. coli proteins for the remaining 10%

(Fig. 1a). Tryptic peptides were combined in the following ratios: sample

PYE A contains 90% w/w human, 2% w/w yeast, and 8% w/w E. coli

proteins. Sample PYE B is composed of 90% w/w human, 6% w/w yeast,

and 4% w/w E. coli proteins. To simulate the challenges of protein

dynamic range in clinical plasma samples, the samples PYE1 A and B

were further diluted using tryptically digested human plasma, thus

additionally reducing the spike-in levels of yeast and E.coli digests (see

Fig. 1a). PYE3 refers to a 1:3 and PYE9 to a 1:9 dilution of the PYE1 sample

set, with PYE9 containing only 1.1% of non-human proteins. The samples

were centrally prepared and shipped to all participating sites on dry ice.

Shipped sample amounts depended on the LC-MS setup used at the

respective site. Per setup, all samples were to be analysed in six replicate

injections. Additionally, two blank injections had to be performed prior

to the sample runs to avoid carry-over from system quality control runs,

typically conducted using HeLa or K562 tryptic digests (see alsomethod

section). MS raw data files were uploaded and analysed centrally using

either MaxQuant, for DDA, or DIA-NN, for DIA data.

In total, twelve study centers of theMSCoreSys consortium (sites A

to L; for an overview on site specific setups see Table 1) took part in the

round robin study, collecting 34 full PYE data sets (most of them, with a
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few exceptions, comprising six replicate measurements of samples PYE1

A, PYE1 B, PYE3 A, PYE3 B, PYE9 A, and PYE9 B, see Table 1 and Sup-

plementary Data 1). Measurements were conducted on different

instrument platforms in either DDA and/or DIA mode, encompassing

1116 individual LC-MS runs. Overall, 13 DDA and DIA data sets were

acquired using the exact same LC-MS setup, allowing a direct compar-

ison of both acquisition modes. Mass spectrometers from various

manufacturers were used in the present study for data collection,

including instruments from ThermoFisher (Orbitrap Eclipse, Orbitrap

Exploris 480, Orbitrap Fusion Lumos, Q Exactive HF, Q Exactive HF-X),

Bruker (timsTOFPro, timsTOFPro2) and Sciex (zenoTOF). In total, seven

different LC platforms were used for peptide separation prior to MS

analysis, including the following models, Ultimate 3000, Vanquish Neo

and EASY-nLC 1200 from ThermoFisher, Evosep One (Evosep), nanoE-

lute (Bruker), nanoAcquity and M-Class fromWaters Corporation. Most

of the LC systems were operated in the nanoflow range, four sites (sites

D, E, F, and K, see Table 1) included micro-flow LC-MS/MS analyses on

their Vanquish Neo LC and M-Class systems. Overall, 13 different LC-MS

setups were used, with the Ultimate 3000 being the predominant LC

platform and the Orbitrap Exploris 480 the prevalent MS instrument in

this study (see Fig. 1b, Supplementary Data 1).

PYE proteome coverage depends on PYE dilution, MS acquisi-
tion mode, overall analysis time, LC-MS setup and data proces-
sing software
To compare the performance of the different LC-MS setups, we first

evaluated the number of proteins and peptides that were identified in

each setting and sample (see Fig. 2a, b, Supplementary Figs. 1 and 2,

Supplementary Data 2). Overall, we observed a high variability in

protein and peptide identifications (IDs) between the different LC-MS

setups and acquisition modes as exemplarily shown for PYE1 (Fig. 2a,

Supplementary Fig. 1a, Supplementary Data 2). IDs were markedly

lower for the DDA as compared to theDIA datasets: In case of DDA, IDs

ranged from 919 to 2759 protein groups (1743 protein groups and

15,835 peptides on average), whereas numbers of identified protein

groups varied between 1433 and 4653 (with an average of 3193

detected proteins and 29,259 peptides) in case of DIA. Moreover, DIA

approaches demonstrated superior reproducibility in terms of iden-

tified proteins and peptides, as exemplarily illustrated for the PYE1 A/B

set. On average, 84.2% of proteins were consistently identified across

all runs within each DIA setup, while this was the case for only 51.5% of

proteins (on average) within a DDA setup (Fig. 2a, Supplemen-

tary Data 2).

Besides the acquisition mode, the number of identified proteins

also depended on the analysis time, i.e., gradient length. For example,

the DIA dataset with the lowest number of IDs (L_nAcqu_tTOF) was

acquired running an 11min gradient, whereas the gradient length was

102min for the setup with the highest protein IDs (H_ulti_ex). Many

sites, however, used similar gradient lengths for the LC-MS analyses

ranging either between 29 and48minor around60 and 70min forDIA

and mainly around and above 50min for DDA analyses. Interestingly,

averaging the ID numbers, we did not observe marked differences

between setups with a gradient length of 29–48min (3235 protein

groups) and 60–70min (3039 protein groups) in DIA mode. However,

Fig. 1 | Overview of the PYE sample set and the study design. a Left panel: The

PYE sample set was centrally prepared and consists of six different samples. A

tryptic digest of human plasma (orange) serves as background. Varying spike-ins

of tryptic E. coli (green) and yeast proteomes (violet) mimic differentially regu-

lated proteins between samples with the denominations A and B enabling the

evaluation of label-free quantification in a plasma background. Exact sample

compositions are provided in the black boxes (percent of total protein mass). To

resemble the challenges of protein dynamic range in clinical plasma samples,

sample set PYE1 was further diluted with tryptic human plasma reducing the

proportion of tryptic E. coli and yeast proteomes in the sample sets PYE3 and

PYE9. Middle panel: PYE samples were shipped for LC-MS analysis to twelve dif-

ferent sites of the MSCoreSys network. Right panel: Subsequent raw data and

statistical analyses of all acquired data sets were conducted centrally. bOverview

of instrumentation and LC-MS setups used in the round robin study. Parts of

a partially generated in Biorender (https://BioRender.com/9vhkffx, https://

creativecommons.org/licenses/by-sa/4.0/ for R logo).
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for some DIA setups with similar analysis times, we observed marked

differences in the protein ID rate, i.e., proteins identified in relation to

gradient length (see Fig. 2a). This can likely be attributed to the lab-

specific differences in instrumentation and LC-MS method settings.

For example, most of the TOF datasets were acquired using 29–48min

gradients, while the 60–70min datasets constitute mainly Orbitrap

data. Among the 60–70min datasets the two microflow setups

(D_Vanq_ex and E_Vanq_ex) show slightly lower protein IDs (on average

around 2400 proteins) as compared to the other setups with

similar gradient length (averaging 3465 protein groups). In contrast to

our expectations, we observed no significant systematic influence of

peak capacity, cycle time, or signal response on the number of iden-

tifications. Overall, we found anoverlap of 683proteins (froma total of

3506 proteins) that were identified in all DDA datasets and 928 out of

5785 proteins that were shared across all DIA runs for PYE1. Over 1600

proteins were shared in 90% of DIA datasets, i.e., across 18

setups.Moreover, 541 proteins were consistently detected in all 34 LC-

MS setups (Fig. 2c, d, Supplementary Fig. 3). These numbers are, of

course, impacted by setups with lower proteome coverage.

When comparing different instrument setups with similar coverage or

those with fewer IDs to those with a deeper proteome coverage, we

observed a significant overlap of identified proteins, reaching in many

cases up to 80–90% (Supplementary Fig. 3), highlighting the repro-

ducibility of LC-MS based plasma proteomic analyses across

different labs.

The choice of processing software can significantly impact the

number of peptide and protein IDs, owing to differences in search and

protein inference algorithms. To assess the influence of software on

IDs and to process both, the DIA and DDA data, with the same tool, we

additionally analysed the whole round robin dataset with the latest

version of FragPipe (version 23, see Supplementary Figs. 4–6). In case

of the DDA analyses, a marked increase in proteome coverage and

reproducibility was observed, as reflected by an enhanced overlap

among technical replicates and across distinct LC-MS instrumentation

setups compared to the MaxQuant results. In contrast, proteome

coverage was markedly lower for DIA as compared to the DIA-NN

analysis, which on average yielded around 25% more protein IDs

compared to FragPipe. Hence, the gap between DDA and DIA is by far

not as prevalent when processing the dataset in FragPipe with some

matching setups showing similar numbers of IDs. Nevertheless, on

average, IDs were higher in DIA mode (around 17%) comparing all

matching DDA and DIA runs. Of note, IDs across the different LC-MS

setups show similar patterns as compared to MaxQuant and DIA-NN,

with the same setups achieving highest and lowest numbers of IDs,

respectively.

Across all settings, the highest number of proteins was con-

sistently identified in PYE1 A/B as compared to PYE3 A/B and PYE9 A/B

samples, which is to be expected as the percentage of E. coli and yeast

proteins is highest in the PYE1 set. Regarding species-specific IDs, the

numbers of detected human plasma proteins were similar between

PYE1, PYE3, and PYE9 within each setting, while we observed amarked

drop in IDs for E. coli and yeast proteins from PYE1 to PYE3 and PYE9

(Fig. 2b, Supplementary Data 3). Independent of the LC-MS setting

used, a three-fold reduction of spike-in levels of E. coli and yeast tryptic

digests reduced the number of E. coli and yeast protein IDs around

1.85-fold in DDA and 1.7-fold in DIA mode between PYE1 and PYE3 and

around 2.35- (DDA) as well as 2-fold (DIA) between PYE3 and PYE9,

respectively.

This is also reflectedwhen integrating the results fromall DDAand

DIA datasets across the different sites (Fig. 3a, b). For both, DDA and

DIA mode, the dynamic range of identified proteins is similar between

PYE1, PYE3, and PYE9, spanning four orders ofmagnitude in the case of

each species, except for human plasma proteins identified by DIA

which cover six orders ofmagnitude. However, with each dilution step

from PYE1 to PYE9, a distinct number of E. coli and yeast proteins falls

below the detection limit, resulting in a reduced proteome coverage

for both, DDA and DIA datasets. In DIA mode, we observed a 1.3- (E.

coli) to 1.4-fold (yeast) decrease inprotein IDs in PYE3 and a2.0- (E. coli)

to 2.5-fold (yeast) decrease in PYE9 as compared PYE1. In case of DDA,

the drop was slightly higher. Here, ID numbers decreased by factors of

around 1.6 in case of PYE3 and 2.6 for PYE9 as compared to PYE1 for

both yeast and E. coli proteins. Overall, abundances of commonly

identified proteins show a high correlation for both acquisitionmodes

between the PYE1, PYE3 and PYE9 sample sets (Fig. 3c, d). As antici-

pated from the serial dilution between sample sets, point clouds per-

taining to E. coli and yeast proteins center around the expected ratios

indicated by the dotted lines.

Notably, the design of the PYE sample additionally allows to

determine the lower limit of detection (LOD) and linearity for thou-

sands of analytes as a function of their signal intensities by comparing

label-free quantification (LFQ) values of individual proteins of E.coli

spike-ins across six dilution levels, covering a 18-fold difference

between PYE_1A and PYE_9B (Fig. 3e, f). Overall, both DDA and DIA

showed good linearity across all six samples. In addition, our analysis

revealed that the 10% lowest abundant E.coli proteins (as defined by a

low LFQ value in PYE1) already fall below detection limit in the PYE3_A

sample in DDA, while they remain detectable in both PYE3_A and

PYE3_B samples in DIA mode, indicating a lower LOD for DIA

quantification.

Table 1 | Overview of the collected datasets in the present
multicenter study

Lab ID LC system MS Gradient

length [min]

DIAa DDAa

A Ultimate 3000 Exploris 50 yes (6) yes (6)

A EvoSep Exploris 44 yes (6) yes (6)

B Ultimate 3000 HF 90 yes (6) yes (6)

B Ultimate 3000 HFX 90 yes (6) yes (6)

C nanoElute timsTOF Pro 70 yes
(6)b

yes (6)

D Ultimate 3000 Orbitrap
Eclipse

60 yes (6) yes (6)

D Vanquish
Neo (MF)

Exploris 60 yes (6) yes (6)

E Ultimate 3000 Fusion Lumos 60 yes (6) yes (6)

E Vanquish
Neo (MF)

Exploris 60 yes (5) yes (5)

F Vanquish
Neo (MF)

Orbitrap
Eclipse

60 yes (6)

G Easy nLC 1200 timsTOF 30 yes (6) yes (6)

G Ultimate 3000 Exploris 48 yes (6) yes (6)

H Ultimate 3000 Orbitrap
Eclipse

120 yes (6) yes (6)

H Ultimate 3000 Exploris 102 yes (6) yes (6)

I Easy nLC 1200 Exploris 44 yes (6)

J Easy nLC 1200 timsTOF 44 yes (3)

K M-Class (MF) ZenoTOF 20 yes (6)

L nanoElute timsTOF Pro2 35.5 yes (3)

L nanoAcquitiy timsTOF Pro 11 yes (3)

L Ultimate 3000 Exploris FAIMS 29 yes (3)

L Ultimate 3000 Exploris 29 yes (3)

aNumbers in brackets indicate the numbers of replicate measurements conducted, i.e., three to

six replicates of each PYE sample were acquired per laboratory setting.
bOne raw data file (C_nE_tTOF PYE3 B replicate 1 DIA) had to be excluded, as number of identi-

fications in DIA-NN were below 60% of average as compared to the remaining replicates of this

sample and setup.
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Fig. 2 | Number of identified proteins in the PYE sample set for different LC-MS

setups and sites. a Number of identified protein groups in the PYE1 sample set for

the different setups. Colours indicate the number of proteins identified in all

replicate runs per setup (complete, black), equal andmore than 50% of runs (grey)

as well as sparse (below 50%, orange) and unique identifications (red). White
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overlap of identified proteins in the PYE1 sample set by c DDA- and d DIA-based

approaches across multiple sites and LC-MS platforms. Proportions of human

(orange), yeast (violet) and E. coli (green) proteins are indicated within the bars.

Source data are provided as a Source Data file.
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DIA workflows show superior quantitative performance over
DDA-based approaches independent of the LC-MS setup used
As reproducibility is a key aspect in large-scale proteomic studies and

we observed a strong influence of the acquisition mode in terms of

proteome coverage, we next compared the quantitative performance

between the different DIA andDDAdatasets inmore detail. In terms of

run-to-run reproducibility, i.e., reproducibility between replicate

injections, DIA-based LC-MS workflows markedly outperformed the

DDA-based methods independent of the LC-MS setup used. Median

coefficients of variation (CVs) of protein abundances ranged between

6.4% and 54.7% (average 15.4%) for DDA and between 3.3% and 9.8%

(average 5.9%) for DIA analyses as exemplarily shown for PYE1 A in

Fig. 4a, b (similar numbers were observed for PYE1 B, Supplementary

Fig. 7a,b, Supplementary Data 4). Among the DIA datasets, data
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derived from timsTOF instruments showed slightly higher variance

(average of median CVs: 8.16%) as compared to the other DIA setups

(4.87%). Similar trends were also observed for the data processed in

FragPipe, where the DIA-based methods display lower CVs as com-

pared to their DDA-based counterparts (Supplementary Fig. 7c, d).

As very different chromatographic setups were used in the

present study, including those at higher flow rates (sites D, E, F, and

K), we additionally assessed chromatographic performance evaluat-

ing the retention time (RT) stability across replicate runs, an essential

factor particularly for label-free quantitative workflows where fea-

tures are mapped across multiple runs37. Overall, the peptide elution

behavior was stable and highly reproducible for most of the LC set-

tings, with median RT CVs below 0.35% across all 34 setups (Fig. 4c,

d). Only few setups (nine in total) displayed slightly higher RT

Fig. 3 | Protein dynamic range and protein intensity distribution across the full

PYE sample set integrating data from all sites. a, b Dynamic range of identified

proteins in PYE1, PYE3 and PYE9 across the full dataset (i.e., summarizing normal-

ized protein abundances from all LC-MS runs) split by species and acquisition

mode. Panel (a) displays the dynamic range for the DDA and panel (b) for the DIA

dataset. To generate the dynamic range plot, protein intensities were integrated

across all different LC-MS setups and divided by the maximum observed intensity,

set to 100%.Correlationofnormalizedprotein abundancesbetweenPYE1, PYE3 and

PYE9 for c the DDA and d DIA datasets. Protein intensities were averaged and

normalized separately for each LC-MS setup to the highest LFQ intensity of each

individual setup. Dotted lines indicate the expected values for the comparison

between the different PYE dilutions. Coefficient of determination (R2) is displayed

in the graphs for human (orange), yeast (violet), and E. coli: (green) proteins. Lin-

earity of E. coli protein LFQ abundances analysed in DDA (e) and DIA mode (f),

exemplarily depicted for two setups, A_ulti_ex and G_nLC_tTOF. The design of the

PYE sample set allows to compare LFQ values of E. coli spike-ins across six dilution

levels. We binned proteins according to their LFQ abundance values (averaged

across six replicate injections) in sample PYE1A into 10 equal-sized bins calculating

for each bin the median value (red dot). Median abundance values for these bins

(i.e., associated with the proteins assigned to initial bins) were calculated and are

plotted for all six PYE samples. Light grey lines represent individual protein

response curves. Source data are provided as a Source Data file.
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Fig. 4 | Reproducibility of LC-MS analyses. Coefficients of variation (CVs) of

protein abundances for replicate analyses of sample PYE1 A were calculated for

each LC-MS setup revealing lower quantitative reproducibility for a DDA as com-

pared to b DIA approaches. Boxplot center lines represent the median value,

boundaries the interquartile range and whiskers the 5th/90th percentiles of the

dataset. The red linemarks 25%CV and green line 10%CV. For detailed information

on the number of replicate injections for each setup (n = 6 in most cases) see

Table 1. c,d Evaluation of RT stability (displayed asCVs of RT, calculated for sample

PYE1, n = 12 in most cases, six technical replicates for each, PYE1 A and PYE1 B, for

details see Table 1) shows reproducible elution of peptides for most of the LC

setups. Center line in the boxplots represents the median value, bounds of boxes

the interquartile range and whiskers the 5th/90th percentiles of the dataset. c the

RT CVs for the DDA and panel (d) for the DIA datasets. Median RT CVs are plotted

against the chromatographic peak capacity for each chromatographic setup for the

e DDA and f DIA datasets. Dot sizes indicate gradient length. Gray: Nanoflow, red:

Microflow setup, see also Supplementary Data 4. Source data are provided as a

Source Data file.
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variance with median values above 0.35%, including two setups

(D_Vanq_ex DDA, I_nLC_ex DIA) with markedly higher RT CVs (0.99%

and 1.19%) compared to the other setups. In contrast to our expec-

tations, we observed nomarked differences regarding RT CV or peak

capacity (Fig. 4e, f) between the micro- and nano-flow settings in

the present dataset. We further noted that, independent of

gradient length or flow rate, a less reproducible peptide elution, i.e.,

higher RT CVs, also correlated with an overall lower chromato-

graphic peak capacity (Fig. 4e, f. Supplementary Data 4). This

observation was slightly more prevalent for the DIA as compared to

the DDA dataset. Particularly DIA methods can benefit from a high

peak capacity, i.e., good chromatographic performance, as many

downstream processing tools use chromatographic elution profiles

for spectral deconvolution and mapping of precursor and

product ions.

The present multicenter study comprises 13 matching DDA and

DIA datasets, where exactly the same LC-MS setup was used for data

acquisition (i.e., analysing the samples at the same site on the same

LC-MS platform, with the same LC method and column setup, see

Table 1 and Supplementary Data 1), which allows a direct back-to-

back comparison of the two acquisition modes (Fig. 5). The majority

of these datasets were acquired on Orbitrap platforms. Summarizing

the quantitative results of the PYE1 analysis across all 13 LC-MS set-

ups, we found that DIA approaches show on average higher accuracy

and precision as compared to the DDA-based methods (Fig. 5a,

Supplementary Data 5): The interquartile range (IQR, Q75-Q25) of the

global distribution of log-transformed ratios (log2(PYE1 A/PYE1 B)) of

protein abundances, averaged across all 13 DIA datasets, ranged

between 0.07 for plasma, 0.16 for E. coli and 0.22 for yeast proteins.

The variance was higher in the case of DDA (IQRplasma = 0.11, IQRE.

coli = 0.19 and IQRyeast = 0.27). Moreover, calculated values (averaged

across all 13 datasets) were closer to the expected ratios for plasma

and for E. coli proteins in the DIA runs as compared to the DDA

analysis. Only in case of yeast proteins, the DDA measurements

showed on average better accuracies as compared to DIA with an

absolute difference from the expected ratio of 0.14 versus 0.18 in

case of DIA. This effect can most likely be attributed to the higher

proteome coverage in DIA, where particularly medium and low-

abundant proteins, that are not detected by DDA, can be still iden-

tified and quantified (Fig. 5b–e). Overall, similar trends in terms of

quantitative precision and accuracy can also be seen for PYE 3 and

PYE 9 where in most cases, DIA methods outperform DDA-based

approaches, as exemplarily shown for an Orbitrap as well as a tim-

sTOF setup in Fig. 5b, c and Table 2. Interestingly, both timsTOF

setups (C_nE_tTOF and G_nE_tTOF) displayed a systematic error of

accuracy values in the same direction for both the DDA and DIA

dataset.

Additionally, we compared the data completeness for identified

yeast proteins across all 13 DDA and DIA datasets. To this end, we

mapped the yeast proteins identified in the PYE1 B sample, ranked by

their abundance, to those identified in PYE1 A summarizing the

results across all 13 datasets. In line with the higher proteome cov-

erage and overlap between the technical replicates (Fig. 2a), the 13

DIA datasets showed a markedly higher data completeness for the

yeast spike-in as compared to their matching DDA datasets (Fig. 5d,

Supplementary Fig. 8): While the DDA dataset displayed 50% missing

values already at protein rank 828, the DIA data reached a value of

50% missingness at protein rank 1637 (Fig. 5d). Additionally, we

directly compared the two datasets mapping the yeast proteins

identified in sample PYE1 B (Fig. 5e). Here, 50% missing values

occurred at protein rank 742, and around 1200 yeast proteins were

uniquely detected in the DIA PYE1 B dataset, further highlighting the

superior performance of DIA compared to DDA-based methods in

the present study.

Comparison of DIA workflows shows robust quantitative per-
formance for all LC-MS setups and highlights the challenges of
accurately quantifying low-abundant proteins
Next, we evaluated the quantitative performance of the 20 different

DIA setups. All LC-MS setups demonstrated excellent performance in

terms of accuracy and precision for label-free quantification of highly

abundant proteins in the PYE sample set (Fig. 6, Supplementary

Figs. 9–12). However, for proteins in the low abundant range accurate

quantification can still be challenging. Yeast proteins make up the

smallest proportion of the PYE samples A and B by quantity. Moreover,

yeast proteins are spiked in at a ratio of 1:3, while the ratio for E. coli

proteins is 1:2,making it evenmore challenging to estimate the correct

ratio between samples A and B for yeast as compared to E. coli or

human proteins. This is also reflected in the results. For example,

variance is markedly higher in the PYE1 set for yeast as compared to E.

coliproteins (IQRof the global distribution of log2(FC) values across all

20 datasets: IQRyeast = 0.23 and IQRE. coli =0.17, see also Fig. 6a and

Supplementary Data 6). Upon additional dilution of the yeast and E.

coli proteomes in the PYE3 and the PYE9 samples (Fig. 6b, Supple-

mentary Fig. 12), variance increases for both species (to IQRyeast = 0.27

and IQRE. coli = 0.19 in the PYE9 set). Interestingly, precision slightly

improves for human proteins from PYE1 to PYE9, likely due to a

decrease of the yeast and E.coli proteome background. Particularly in

the lowest abundance tertile accurate and precise quantification still

remains challenging. This becomes evident when looking exclusively

at the log2(FC) distributions of the proteins in the low abundance

range (i.e., the tertile of the dataset encompassing the proteins with

the lowest abundance values, Fig. 6c, d). Across all dilutions, com-

prising sample sets PYE1 to 9, accuracy and precision are markedly

lower, particularly for E.coli and human proteins, in the lowest abun-

dance tertile as compared to the full dataset that includes also themid

and high abundant proteins (Fig. 6a, b Supplementary Fig. 12).

Looking at the full PYE dataset (Fig. 6e), accuracy follows a similar

trend as the precision. Averaging across all datasets, accuracies of

calculated log2(FC) values for human proteins improved from the PYE1

to the PYE9 sample set (with an average absolute difference between

median and expected values of0.10 in PYE1 and0.01 in PYE9; Fig. 6a, b,

Supplementary Data 6). Comparing yeast and E. coli proteomes,

deviations from the expected ratios are markedly higher for yeast as

compared to E. coliproteins in all sample sets, i.e., PYE1, PYE3 andPYE9

(Fig. 6e). Accuracy is similar for yeast proteins between samples PYE1,

PYE3 and PYE 9, whereas there is a slightly higher deviation from the

expected values in PYE9 as compared to PYE1 for E. coli proteins.

Interestingly, most TOF setups show a similar trend regarding

their LFQ values, which display a consistent shift from the expected

values for yeast and human proteins in the same direction (Fig. 6a, b,

e), indicating a potential issue with background correction for the TOF

data overestimating LFQ abundances for low abundant proteins7. This

effect can potentially be attributed to an overall higher background in

TOF mass spectra as compared to those derived from Orbitrap plat-

forms, or alternatively to different background subtraction algorithms.

For the Orbitrap LC-MS setups, we observe varying effects. For

example, the two micro-flow setups (D_Vanq_ex and E_Vanq_ex), show

the highest accuracy and precision for humanproteins as compared to

all other setups. However, deviations from the expected log2(FC)

values point to an underestimation of LFQ values for low-abundant

yeast and E. coli proteins. For other Orbitrap setups, e.g., D_ulti_ecl,

H_ulti_ecl, H_ulti_ex, we observe a systematic error (in PYE1 and PYE3)

of the calculated log2(FC) values for all species towards a higher

log2(FC) than expected.

To better understand some effects, we additionally evaluated for

the yeast proteins if some metrics, such as data points per peak,

number of identified proteins, peak capacity, or mean CV, correlate

with quantification accuracy and precision at a proteome-wide scale
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Fig. 5 | Lowernumber ofmissing values andbetter quantitative performanceof

DIA- as compared to DDA-based methods. a Violin plots of log-transformed

ratios (log2(PYE1 A/PYE1 B)) of protein abundances for matching DDA and DIA LC-

MS setups. Solid lines within the violin plot indicate the median log2(A/B) value for

each setup and red dashed lines the expected log2(A/B) values for human (orange),

yeast (violet), and E. coli (green) proteins (Supplementary Data 5). Log-transformed

ratios (log2(A/B)) of proteins were plotted over the log-transformed intensity of

sample A for DDA and DIA data acquired with the same LC-MS setup on b an

Orbitrap as well as c a timsTOF platform. d Percentage of missing values for yeast

proteins in PYE1 A as compared to PYE1 B (ranked by protein abundance) for the

DDAandDIAdataset. e Percentageofmissing values for yeast proteins in the PYE1B

DDA dataset as compared to the PYE1 B DIA dataset dependent on protein abun-

dance across all 13 LC-MS setups displayed in panel (a). d, e X-axis: Rank as defined

by the average normalized intensity (INTProtein/INTmax) across all 13 setups. Y-axis:

Missingness (1-(number of detections/number of runs)) across all 13 setups and

injection replicates as percent values.
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(exemplarily shown for PYE1, Fig. 6f and Supplementary Fig. 13, Sup-

plementary Data 7) and found that the median deviation from expec-

ted values slightly increased in datasets with higher ID numbers.

Moreover, in datasets that display higher accuracies, more data points

were recorded across a chromatographic peak. Interestingly, we

observed a slightly opposing trend regarding the precision (Supple-

mentary Fig. 13), which improved when higher numbers of proteins

were identified. Other factors, i.e., mean CV or data points per peak,

did not correlate with improved precision, i.e., lower variance.

Interlaboratory LC-MS analyses employing identical setups and
instrumental parameters demonstrate robust method
transferability
To leverage the advantages of multicenter studies, particularly

regarding method transferability and interlaboratory reproducibility,

we re-analysed the PYE1 sample set at site L using theUltimate/Exploris

DIA configurations from sites G and H (G_ulti_ex, H_ulti_ex), as well as

the EASY-nLC 1200/timsTOF DIA setup from site G (G_nLC_TOF). Re-

analysis of the PYE1 sample at site L, using the LC-MS configurations

from the original sites, yielded highly comparable numbers of protein

and peptide identifications (Fig. 7a) with substantial overlap (Fig. 7b),

effectively demonstrating the interlaboratory transferability of the

methods. Additionally, the quantitative profiles closely mirrored the

distribution patterns observed in the original round robin dataset

(Fig. 7c).Of note, theH_ulti_ex andG_nLC_tTOFDIA setups from sites G

andHyielded thehighest proteome coverage in the round robin study.

In line with the round robin data, remeasurements at site L also pro-

vided lower proteome coverage for the G_ulti_ex setup, which uses the

same LC-MS and column setup as H_ulti_ex, but half the analysis time,

i.e., 60min versus 120min and slightly different DIA method with

adapted lower cycle time (see Supplementary Data 1).

To further explore how the number of IDs is influenced on a dis-

tinct platform, we additionally conducted a back-to-back comparison

of the timsTOF setups from sites G and L. G_nLC_TOF, the timsTOF

setup providing the highest IDs, uses an IonOpticks Aurora column

(75 µm ID × 25 cm) for peptide separation running a 30min gradient at

300 nL/min (Fig. 7d, e). We analysed the PYE1 sample using the MS

method of site G but the LC setting from site L (Bruker PepSep setup,

150 µm ID × 25 cm, 35.5min gradient at 850 nL/min). This resulted in a

marked drop in the number of identified proteins and peptides

(Fig. 7d, e). In contrast, we observed no marked differences in IDs

between the MS methods from sites G and L (30Da versus 25Da fixed

window schemes, different IMS range and cycle time). These data

clearly indicate, that the LC setup used by site G (IonOpticks Aurora

column 75 µm ID × 25 cm, 30min gradient at 300nL/min, final amount

of 28% (v/v) ACN) outperforms the conditions used by site L in the

round robin study (Bruker PepSep column 150 µm ID × 25 cm, 35.5min

gradient at 850 nL/min up to 38% (v/v) ACN).

To evaluate whether the findings from the PYE analyses are

applicable to native plasmasamples,we analysed aneat plasmasample

without any spike-ins across three different sites using four different

Orbitrap-based LC-MS setups from the round robin study (Fig. 7f, g).

Consistent with the results obtained from the PYE analyses, we

observed similar trends regarding the number of IDs as compared to

the round robin study with a high degree of overlap (Fig. 7g). In line

with the round robin study, the setup with the longest gradient and

analysis time, i.e., H_ulti_ex, provided the best proteome coverage also

for the neat plasma sample. This clearly demonstrates that depending

on the scope of a (clinical) study one has to balance proteome depth,

quantitative performance, and sample throughput when choosing an

LC-MS setup for plasma analysis.

Discussion
Over the past two decades, plasma proteomics has evolved sig-

nificantly, progressing frombasic protein cataloguing to sophisticated

workflows that quantify thousands of proteins with high

Table 2 | Metric summary for the datasets shown in Fig. 5

Species DDA DIA Sample

IDs Accuracya Precisionb IDs Accuracya Precisionb

Lab A ulti_ex

E.coli 833 0.19 0.24 1492 −0.04 0.17 PYE1

Human 175 0.19 0.19 399 0.06 0.10

Yeast 982 0.23 0.27 2183 0.17 0.18

E.coli 481 0.05 0.17 1061 −0.03 0.19 PYE3

Human 186 0.09 0.08 466 0.08 0.14

Yeast 569 0.09 0.29 1411 0.21 0.22

E.coli 217 0.09 0.19 591 −0.02 0.16 PYE9

Human 187 0.10 0.11 460 0.00 0.15

Yeast 240 0.15 0.38 704 0.02 0.21

Lab G nLC_tTOF

E.coli 1095 0.15 0.22 1614 0.07 0.14 PYE1

Human 246 0.26 0.16 368 0.19 0.12

Yeast 1548 0.37 0.32 2530 0.42 0.22

E.coli 713 −0.02 0.18 1218 −0.07 0.14 PYE3

Human 226 0.07 0.09 393 0.07 0.09

Yeast 904 0.17 0.33 1742 0.36 0.26

E.coli 456 0.02 0.24 749 −0.09 0.18 PYE9

Human 279 0.11 0.13 412 0.06 0.14

Yeast 565 0.23 0.29 900 0.29 0.24

The table summarizes number of identified protein groups, median accuracy and precision (Q075-Q025) for sample sets PYE1 to PYE9 analysed in DDA and DIA mode on an Orbitrap (site A) and a

timsTOF setup (site G). Full data across all sites is found in Supplementary Data 5.
aAccuracy: deviation of the experimental log-transformed ratio (log2(A/B)) of protein abundances from the expected value, Q050.
bPrecision: Q075–Q025.
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Fig. 6 | Quantitative metrics of the DIA dataset acquired with 20 different LC-

MS setups. Violin plots of log-transformed ratios (log2(A/B)) of protein abun-

dances for a the full PYE1 and b PYE9 set (Supplementary Data 6). Violin plots of

log-transformed ratios (log2(A/B)) of protein abundances in the lowest intensity

tertile for c the PYE1 and d PYE9 set. Solid black lines within the violin plot indicate

the median log2(A/B) value for each setup and red dashed lines the expected

log2(A/B) values for human (orange), yeast (violet), and E. coli (green) proteins.

eDeviation of themedian log-transformed ratio (log2(A/B)) of protein abundances

from the expected value. Plots summarize data for human (orange), yeast (violet)

and E. coli proteins (green) for the PYE1, PYE3 and PYE 9 datasets. f Correlation of

median accuracies (calculated for yeast proteins in the PYE1 set) with othermetrics

such as number of identified proteins (left), median CV [%] of protein abundances

(middle) and number of datapoints acquired across the chromatographic peak

(right panel). Dot sizes indicate gradient length. Blue: Orbitrap, orange: TOF ana-

lyzer, see also Supplementary Data 7. Source data are provided as a Source

Data file.
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Fig. 7 | Reproducibility and inter-laboratory transferability of methods.

aNumbers of identified proteins and peptides in the PYE1 samples comparing data

from the round robin study with remeasurement using the same setup as indicated

in site L (n = 12, six technical replicates for each, PYE1 A and PYE1 B). b Overlap of

identifiedprotein groups between the round robindata and the remeasurements in

site L. c Violin plots of log-transformed ratios (log2(A/B)) of protein abundances in

PYE1 for the round robin data and the remeasurements at site L. d Numbers of

identified proteins and peptides in the PYE1 samples comparing the nLC_tTOF

round robin data from site G with remeasurements in site L using different LC and

MS settings (as indicated in the table on the right; n = 12, six technical replicates for

each, PYE1 A and PYE1 B). e Upset plot depicting the overlap of identified protein

groups from the measurements in (c). f Numbers of identified proteins and pep-

tides in neat plasma samples (without spike-ins, n = 6 replicate injections) analysed

at three different sites using LC-MS setups as indicated (for more details see Sup-

plementary Data 1). LC-MS setups G_ulti_ex and H_ulti_ex were used at the respec-

tive sites as indicated (light blue) as well as at site L (darker blue). g Upset plot

depicting the overlap of identified protein groups from the measurements in (g).

Source data are provided as a Source Data file. In panels (a, d, f) points represent

individual injections; bars and error bars show mean± sd.
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precision16,38,39. Despite these advancements, plasma remains a chal-

lenging sample matrix for LC-MS-based proteomics due to its tre-

mendous dynamic range3,4. High-abundant proteins, such as albumin

and immunoglobulins, can overshadow lower-abundance proteins,

many of which hold potential as biomarkers for disease. Early plasma

proteomics studies using DDA-basedmethods identified typically only

a few hundred proteins3,40, with a bias toward high-abundant ions and

inconsistent detection of low-abundance peptides across analyses.

Workflows incorporating off-line fractionation and depletion strate-

gies improved proteomic depth, extending coverage to over 1000

proteins identified per sample, albeit with significant time costs10,11.

DIA-based approaches address challenges of dynamic range and

reproducibility by capturing all ions in amass-to-charge range without

bias41, thereby improving consistent and reproducible detection of

low-abundance proteins. Coupled with high-resolution MS, DIA

enables robust, efficient identification of over 500–1000 proteins

from neat plasma, minimizing fractionation needs and advancing

biomarker discovery in large-scale studies42,43. While some studies

show DIA outperforms DDA in plasma proteomics by capturing a

broader ion range and enhancing low-abundance protein

quantification44, systematic comparisons across various LC-MS plat-

forms are limited. Such research is essential, as differences in LC and

mass spectrometer hardware configurations affect resolution, sensi-

tivity, and scan speed, impacting DIA and DDA performance. Addi-

tionally, variations in LC parameters, including gradient length,

column and flow rate, also influence peptide separation and

detection45,46. Despite the high potential of LC-MS proteomics for

protein identification and quantification, its diagnostic use is limited

by a lack of standardized workflows and validation processes required

for accreditation4,47. Cross-platformstudieswould clarify howdifferent

parameters affect DDA and DIA, guiding method selection for stan-

dardization and demonstrating each method’s practical benefits

across diverse workflows for plasma proteomics.

Here, we designed and conducted a multicenter study including

twelve partner sites of the German research cores for mass spectro-

metry in systems medicine (MSCoreSys) to assess label-free quantifi-

cation performance on a benchmark sample set, simulating the high

protein dynamic range typical of neat plasma. Including multiple sites

and adiverse range of LC-MS setups,with data centrally analysed using

standardized software (MaxQuant for DDA and DIA-NN for DIA, Frag-

Pipe for both acquisitionmodes), lends robustness to our findings. We

focused on critical parameters such as intra- and inter-laboratory

reproducibility, highlighting proteins consistently detected across LC-

MS platforms at various sites. Additionally, we evaluated the total

number of quantified proteins, quantitative reproducibility, data

completeness, and the precision and accuracy of quantification.

Unlike previous benchmark studies that used a HeLa digest as a

matrix7,19, we generated a multispecies sample set based on a human

tryptic plasma digest with varying spike-in amounts of tryptic digests

of yeast and E. coli proteomes. This effectively simulates the high

protein dynamic range of human plasma and the low abundance of

potential biomarker candidates4,22. Specifically, the initial sample set

(PYE1 A/B) was diluted incrementally at a 1:3 ratio with a human tryptic

plasma digest, reaching maximum dilution in PYE9 A/B, where human

plasmaproteins constituted 98.9% of the total proteinmass, with yeast

and E. coli proteins comprising the remaining 1.1%. Notably, even at

these low spike-in levels, current-generation instrument platforms

provided precise and accurate label-free quantification of several

hundreds of yeast and E. coliproteins in the present study. Our analysis

of proteome coverage across various LC-MS setups, acquisition

modes, and PYE sample dilutions showed that DIA consistently out-

performed DDA in protein and peptide ID numbers, with DIA work-

flows offering greater run-to-run reproducibility and higher

consistency in protein identification. Notably, the detection of hun-

dreds of non-human proteins across the full dynamic range indicates

that current DIA based proteomic platforms are likely to cover the

entire plasma proteome in the upper 3–4 orders of magnitude of

dynamic range. Compared to DDA, DIA-based workflows achieved up

to eight times higher proteome coverage, improved quantitative

reproducibility, and significantly fewer missing values, consistent with

previous studies24,41,48. However, identifications on the protein as well

as peptide level can be significantly impacted by the software tool and

settings used for data processing and database search. The gap in

proteome coverage between the DDA and DIA dataset markedly

decreased upon data processing in FragPipe highlighting the impor-

tance of exploring different software tools and parameters for data

analysis when planning a (clinical) study. Overall, our data demon-

strate that a technical reproducibility between replicateswith less than

6%CV are achievable across different setups and instrument platforms

using DIA-based approaches. This indicates that precise label-free

quantification is feasible even in a complex matrix such as plasma

using state-of-the-art workflows. This high precision and accuracy in

label-free quantification underscore DIA as the preferred acquisition

method for the analysis of plasma and other high-dynamic range

proteomes using LC-MS. Interestingly, while DIA excelled in identifi-

cation and quantification metrics, our study also revealed that longer

gradient times generally led to higher ID rates. However, differences in

the LC-MS setup including, for example, instrument type, column

characteristics, etc., more profoundly affected detection rates, even

with similar gradient durations. Notably, all participating sites used

chromatographic setups that were optimized for plasma proteomics

to provide optimal sensitivity, reproducibility, and data quality. Opti-

mizing chromatography is thought to be particularly important in DIA

due to its continuous, wide-window sampling, where optimal peak

sharpness and separation are essential for capturing high-quality

fragment ion spectra and maximizing identification rates. However, in

contrast to our expectations, we did not observe a significant corre-

lation of chromatographic parameters, i.e., peak capacity or retention

time stability, with the respective proteomic coverage or quantitative

metrics. Thismay likely be attributable to themultiparametric setup of

the participating labs and the high dynamic range of the PYE

sample set.

Although challenges remain in accurately quantifying low-

abundance proteins in plasma proteomics, our findings underscore

the significant improvements in LC-MS-based workflows in recent

years, which now offer enhanced quantitation accuracy and precision.

Here, our findings alignwith a recent study inwhich amixed proteome

benchmark set based on HeLa digest was used to assess the impact of

DIA-NN processing parameters on the evaluation of QE-HF data and a

cross-platform comparison. In thementioned study, a CV cut-off of 5%

was suggested as a threshold for deeming workflows or datasets

quantitatively reproducible29. Looking ahead, we anticipate that fur-

ther developments in chromatography and mass spectrometric

instrumentation will push the boundaries of both proteomedepth and

data quality. While reference studies from the early 2000s demon-

strated state-of-the-art plasma proteomics with the identification of

around 100–200 proteins, it is now routinely possible to achieve a

coverage of >500–1000 proteins42,43. Recent comparisons between

instruments, like the Orbitrap Exploris 480 and Astral, demonstrate

promising gains in sensitivity, highlighting the potential for even

greater precision in low-abundance protein quantification30, particu-

larly also with respect to plasma analysis49.

Our dataset not only identifies areas for further improvement but

also serves as a valuable resource for software development, offering a

comprehensive overview of current technological capabilities in LC-

MS workflows. Moreover, we could demonstrate how multicenter

studies can facilitate the reproducible transfer of methods across dif-

ferent sites. These advancements show how LC-MS technology has

evolved into a robust and reliable platform with great potential for

biomarker discovery and validation. It sets the stage for a continuously
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increasing role of quantitative proteomics in systems medicine and

clinical research.

Methods
Reagents and chemicals
Unless otherwise stated, all solvents (HPLC and Ultra LC-MS grade)

were purchased from Roth and all chemicals were obtained

from Sigma.

Preparation of the PYE benchmark sample set
Human plasma was commercially obtained from BioCat GmbH

(Heidelberg, Germany) and tested negative for HIV, ZIKA Virus, STS

(Syphilis) and Hepatitis B/C. A pure culture of the Saccharomyces

cerevisiae bayanus, strain Lalvin EC-1118 was obtained from Eaton

(www.eaton.com). E. coli was purchased from Thermo Fisher

Scientific.

E. coli cells were lysed using a urea-based lysis buffer (7M urea,

2M thiourea, 5mM dithiothreitol (DTT), 2% (w/v) CHAPS). Lysis was

further promoted by sonication at 4 °C for 15min using a Bioruptor

(Diagenode, Liège, Belgium). Yeast proteins were extracted using

alkaline pre-incubation with 0.1M NaOH (VWR, USA) followed by an

additional incubation step in lysis buffer containing 1% (w/v) SDS (Carl

Roth, Germany) at 95 °C.

After lysis, the concentrations of E. coli and yeast proteins were

determined using the Pierce 660 nm protein assay (Thermo Fisher

Scientific) according to themanufacturer´s protocol. Neat plasma was

diluted 166-fold in urea-based buffer (7M urea, 2M thiourea, 5mM

dithiothreitol (DTT), 2% (w/v) CHAPS) prior to digestion.

Human plasma, yeast and E. coli proteins were digested on an

Biomek i7 robotic pipetting platform (Beckman Coulter Life Sci-

ences, Indianapolis, USA) equipped with a positive pressure adapter

(Amplius, Germany) using an adapted filter-aided sample prepara-

tion (FASP) protocol50. All digestion steps are detailed in Distler

et al.51 andwere implemented on the Biomek i7 liquid-handling robot.

Unless stated otherwise, each step of the semi-automated FASP

workflow was performed as described51 and carried out by the liquid-

handling robot applying a positive pressure of 500mbar for 6–15min

to force the liquid through the filter membranes. All volumes were

adapted to 100 µL/well, except for the trypsin digestion and the

elution steps after overnight digestion: Sample aliquots (corre-

sponding to 30 µg of protein per well) were manually transferred

onto AcroPrep Advance 96-well 350 µL 30K Omega filter plates (Pall

Cooperation, USA) which had been additionally preconditioned with

0.1% (v/v) formic acid (FA) and urea-based lysis buffer (7M urea, 2M

thiourea, 5mM dithiothreitol (DTT), 2% (w/v) CHAPS) in case of

plasma and E. coli. After sample transfer, membranes were washed

once with a urea-based wash buffer (8M urea, 0.1M Tris-HCl, pH 8.5).

Proteins were then reduced for 15min at 56 °C using 8mM DTT

dissolved in the urea-based wash buffer followed by an additional

washing step. Afterwards, proteins were alkylated with 50mM

iodoacetamide (IAA, in urea-based wash buffer) for 20min at room

temperature. Excess IAA was removed by two washes using the urea-

based wash buffer and additionally quenched with 8mM DDT for

15min at 56 °C. Afterwards, the membrane washed twice with urea-

based wash buffer followed by three additional washing steps with

50mM NH4HCO3. Proteins were then digested overnight at 37 °C

adding 40 µL of trypsin (Trypsin Gold, Promega, Madison, WI) dis-

solved in 50mM NH4HCO3, 0.02% (w/v) DDM in water at an enzyme-

to-protein ratio of 1:50 (w/w) corresponding to 0.6 µg of trypsin per

well. After digestion, tryptic peptides were recovered from the

membrane adding 40 µL 50mM NH4HCO3. Flow-throughs were

acidified with FA to a final concentration of 0.1% (v/v) FA. Tryptic

peptides from multiple well plates were pooled in case of all three

species to obtain digest stock solutions for the generation of the PYE

sample set.

Digest quality of the different stocks was assessed by LC-MS

(checking for impurities, peptide abundances, total ion current as well

as number of peptide and protein IDs). Tryptic peptides were subse-

quently mixed in predefined ratios to generate hybrid proteome

samples. In total, the PYE benchmark set comprises six samples, PYE1 A

and B, PYE3 A and B, PYE9 A and B (at 2 µg/µL protein). For the

PYE1 sample set, tryptic peptides were combined in the following

ratios: sample A was composed of 90% w/w human, 2% w/w yeast, and

8% w/w E. coli proteins. Sample B was composed of 90% w/w human,

6% w/w yeast, and 4% w/w E. coli proteins (Fig. 1a). To generate the

PYE3 sample set, samples PYE1 A and Bwere furthermixedwith tryptic

human plasma peptides at a ratio of 1:3. PYE3 samples were then fur-

ther diluted threefold with human plasma peptides resulting in the

PYE9 sample set.

Afterwards, samples were shipped to all participating sites on dry

ice. Shipped sample amounts (i.e., volumes) were dependent on the

LC-MS setup used at the respective site providing higher sample

amounts to the sites that used a microflow LC-MS setup (see Table 1

and Supplementary Data 1).

Filter-aided sample preparation (FASP) of neat plasma sample
Blood samples were collected from five healthy volunteers from site L

(see also ethics statement). EDTA plasma was prepared by cen-

trifugation at 1780 × g for 10min. The resulting plasma samples were

pooled and stored at −80 °C until further processing. Proteolytic

digestion of the collected plasma pool was performed using an adap-

ted FASP protocol50. All digestion steps are detailed in Distler et al.51

and were performed manually in a 96-well format analogue to the

procedure described above (preparation of the PYE benchmark sam-

ple set). In brief, 20 µg of sample material were manually transferred

into eachwell of anAcroPrepAdvance96-well 350 µL 30KOmegafilter

plate (Pall Cooperation, USA), which had been preconditioned with

0.1% (v/v) FA.

All volumes, except the volume of the trypsin solution and the

steps on day two, corresponded to 100 µL/well. After sample transfer,

membranes were washed once with a urea-based wash buffer (8M

urea, 0.1M Tris-HCl, pH 8.5) followed by reduction of proteins using

8mM DTT. After two washing steps with urea-based wash buffer,

proteins were alkylated with 50mM IAA. Excess IAA was removed by

twowashes and quenched with 8mMDDT. Afterwards, themembrane

was washed twice with urea-based wash buffer followed by three

additional washing steps with 50mM NH4HCO3. Proteins were subse-

quently digested overnight at 37 °C with trypsin gold (0.4 µg/well,

Promega, USA) in 40 µL 50mMNH4HCO3. After digestion40 µL 50mM

NH4HCO3 were added to the samples to recover tryptic peptides.

Samples were acidified with 10 µL 1 % formic acid, which was added to

the wells of the 96-well collection plate containing eluted peptides

(Waters, USA). Peptides were pooled into one sample pool, which was

aliquoted, and lyophilized. Lyophilized sample was sent out to three

different partner sites (i.e., sites G, H, and L). At the different sites

samples were re-constituted in 0.1% FA (v/v) in water (final con-

centration of 1 µg/µL) followed by a further dilution to 200ng/µL in

0.1% FA (v/v) for LC-MS measurements.

Liquid-chromatography mass spectrometry (LC-MS)
All participating siteswere asked to analyse the PYEbenchmark sample

set using their preferred LC-MS setup for the characterization of

plasma samples according to the following measurement scheme: (1)

blank injection, (2) Hela QC (e.g., Pierce™HeLa, Thermo Scientific), (3)

two blank injections, (4) PYE samples in the following order, PYE A9,

PYE B9, PYE A3, PYE B3, PYE A1, PYE B1), (5) blank injection. All samples

had to be analysed in multiple replicates (ranging from three to opti-

mally six replicate injections). No other restrictions were imposed on

the study centers regarding LC-MS setup, gradient length, on-column

load, etc. Detailed description of the LC-MS settings are provided in
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the supplementary section (see Extended Material and Methods sec-

tion of the Supplementary Info file).

Raw data processing and label-free quantification
All MS raw data sets of the participating partner sites were collected

and centrally analysed in the Tenzer laboratory.

The analysis of DDA data sets was performed using MaxQuant

(version 2.3.1.0)34,35. Data were searched against a customized data-

base, which was generated by compiling the SwissProt database

entries of the human, yeast and E. coli referenceproteomes and a list of

common contaminants (UniProtKB release 2020_03, total of 31,039

entries). For each LC-MS setup and PYE dilution, i.e., PYE1, PYE3 and

PYE9, data processing was performed separately. Default MaxQuant

parameters were applied, including label-free quantification and

match between runs (MBR) enabled. The LFQ minimum ratio count

was set to two peptides. Trypsin was chosen as the enzyme and up to

two missed cleavages were allowed. Carbamidomethylation of

cysteine was set as a fixed modification, while methionine oxidation

was specified as variable modification. The FDR was set to 1% for both

PSMs and protein level (for parameter file, see Supplementary Data 8).

The DIA data were all processed using DIA-NN (version 1.8.1)36

applying the default parameters for library-free database search (see

Supplementary Data 8). For each LC-MS setup and PYE dilution, i.e.,

PYE1, PYE3 and PYE9, analysis was performed separately. Data were

queried against the same database as the DDA datasets (see previous

paragraph). For peptide identification and in-silico library generation,

trypsin was set as protease allowing one missed cleavage. Carbami-

domethylation was set as fixed modification and the maximum num-

ber of variable modifications was set to zero. The peptide length

rangedbetween 7 and 30 amino acids. Theprecursorm/z rangewas set

to 300–1800, and the product ion m/z range to 200–1800. As quan-

tification strategywe applied the robust LC (high precision)modewith

RT-dependent median-based cross-run normalization enabled. We

used the build-in algorithm of DIA-NN to automatically optimize MS2

and MS1 mass accuracies and scan window size. Peptide precursor

FDRs were controlled below 1%.

PYE data were additionally processed using FragPipe52 (version

23.0), separately for each LC-MS setup and measurement mode.

ZenoTOF raw files were converted to mzML beforehand using

MSConvert53 (version 3.0.20280) with vendor peak picking. The data

were searched against the same protein sequence database used for

MaxQuant and DIA-NN analyses including the same number of

reversed decoy sequences generated by FragPipe. For all DDA

experiments the LFQ-MBR workflow was employed, which uses

IonQuant54 for MS1-level quantification. As part of this workflow,

normalization of intensities across runs was disabled as we observed

some strange effects in the DDA set using cross-run normalisation.

For diaPASEF data the DIA_SpecLib_Quant_diaPASEF workflow was

used which applies diaTracer55 for spectrum deconvolution prior to

searching. All other DIA experiments were processed using the

DIA_SpecLib_Quant workflow, leveraging MSFragger-DIA31 for direct

peptide identification. DIA quantification was performed using the

integrated DIA-NN (version 1.8.2 beta 8) module with cross-run nor-

malization disabled via the --no-norm command. To ensure a fair

comparison across workflows, key parameters were standardized:

the precursor mass tolerance was set from 20 to 20 ppm, and the

fragment mass tolerance was 20 ppm. A maximum of one missed

tryptic cleavage and one methionine oxidation was allowed. FDR

filtering and report generation were conducted using the --picked

and --prot 0.01 flags. Default settings were maintained for all other

parameters.

Downstream analysis of PYE data sets
The software reports of eachdata set (PYEdilution, site and instrument

setup) were processed separately. All downstream analyses were

conducted after removing reversed sequences and potential con-

taminants, allowing only proteins identified by 2 or more peptides. In

case of the DIA data (DIA-NN), Q.Value, PG.Q.Value, Lib.Q.Value, and

Lib.PG.Q.Value had to be additionally below or equal 0.01 for all plots

containing quantitative information. For the generation of plots that

contain statistics related to the calculated log2(FC) values between

samples A and B (e.g., violin plots, log2(FC) plots, etc.), proteins had to

be identified andquantified in at least three technical replicates in each

condition, i.e., sample A and B (for both, DDA and DIA datasets). Of

note, Peptides shared between species were excluded for log2(FC)

plots (and violin plots), but taken into account to calculate numbers of

identified proteins and peptides. A comprehensive overview of iden-

tified and quantified proteins and peptides across all sites for the DDA

(MaxQuant) and DIA (DIA-NN) analyses can be also assessed via

Zenodo at [https://doi.org/10.5281/zenodo.17131745]. Additionally, an

overview of the search results from all software tools uploaded to

jPOST/ProteomeXchange (JPST003358/PXD056598) is provided in

Supplementary Data 9.

Downstream analysis of the result files from MaxQuant, DIA-NN

and FragPipe was performed in R (version 4.3.2)56 using in-house

scripts to calculate and report a set of metrics including the visuali-

zation of log2(FC) changes, identification rates (number of identified

proteins and peptides for benchmark species), technical variance

(the median CV for protein abundances and retention times), global

accuracy (the median deviation of log2 ratios to the expected value),

global precision of quantification (defined by the interquartile range

and the standard deviation of log2 ratios). Identification complete-

ness (bar plots) as well as RT CV plots summarizing results across

multiple data sets were inspired by the mpwR (https://CRAN.R-

project.org/package=mpwR)57 and the log2(FC) plots for individual

setups by the LFQBench package7. ggplot2 was used to design the

plots, except for the upset plots58, which were generated with

ComplexUpset59.

For the analyses displayed in Fig. 3 processing results were inte-

grated across the different LC-MS setups merging the processing

results (from the analyses described above for each dilution level and

species). Intensities for each protein were aggregated by calculating

the mean and normalized against the maximum reported protein

intensity valuewithin each LC-MS setup. These normalized valueswere

then combined across labs for each PYE dilution to obtain a single

intensity value per protein, which was then ranked (Fig. 3a, b). For the

scatter plot analysis, protein intensities were averaged and normalized

separately for each LC-MS setup and PYE dilution level, to assess and

plot the correlation between protein intensities across the different

PYE dilution levels, i.e., PYE sample sets (Fig. 3c, d). To this end, we

divided the LFQ values for each protein by the LFQ value of the most

abundant protein (highest LFQ value) for each site and setup. Ratio

were then multiplied by 100 to convert into percent, with 100% cor-

responding to the highest LFQ value. Figure subpanels have been

integrated using Adobe Illustrator (version 29.7.1). Bar plots in

Figs. 1 and 7 have been generated using GraphPad Prism (ver-

sion 10.5.0).

Ethics statement
Blood samples were taken at the University Medical Center of the

Johannes Gutenberg University Mainz from five healthy donors after

obtaining informed consent. All experiments containing human blood

plasma from these donors were approved by the ethics committee of

the Landesärztekammer Rheinland-Pfalz, Mainz No. 837.439.12 (8540-

F) and thus performed in compliance with all relevant laws and

guidelines.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Article https://doi.org/10.1038/s41467-025-64501-z

Nature Communications |         (2025) 16:8774 15



Data availability
The rawmass spectrometry data generated in this study alongwith the

database search results have been deposited to the ProteomeXchange

Consortium (http://proteomecentral.proteomexchange.org) via the

jPOST partner repository60 with the dataset identifiers PXD056598

(ProteomeXchange) [https://proteomecentral.proteomexchange.org/

cgi/GetDataset?ID=PXD056598] and JPST003358 (jPOST, https://

repository.jpostdb.org/entry/JPST003358) (PYE analyses from all

partner sites as well as plasma proteome experiments). An overview of

deposited data files is also provided in Supplementary Data 9. Source

data are provided with this paper via Zenodo at [https://doi.org/10.

5281/zenodo.17131745]. Additional data files providing a full summary

of identified proteins and peptides across all sites for the DDA and DIA

analyses can be also assessed via Zenodo at [https://doi.org/10.5281/

zenodo.17131745]. Source data are provided with this paper.

Code availability
The R scripts for reproducing the figures are available via GitHub at

[https://github.com/HanYoo1402/LFQ-Bench-Scripts-for-PYE-

Multicenter-Study and Zenodo at [https://doi.org/10.5281/zenodo.

17018339].
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