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Human plasma is routinely collected during clinical care and constitutes a rich
source of biomarkers for diagnostics and patient stratification. Liquid
chromatography-mass spectrometry (LC-MS)-based proteomics is a key

method for plasma biomarker discovery, but the high dynamic range of
plasma proteins poses significant challenges for MS analysis and data pro-
cessing. To benchmark the quantitative performance of neat plasma analysis,
we introduce a multispecies sample set based on a human tryptic plasma
digest containing varying low level spike-ins of yeast and E. coli tryptic pro-

teome digests, termed PYE. By analysing the sample set on state-of-the-art LC-
MS platforms across twelve different sites in data-dependent (DDA) and data-
independent acquisition (DIA) modes, we provide a data resource comprising
a total of 1116 individual LC-MS runs. Centralized data analysis shows that DIA
methods outperform DDA-based approaches regarding identifications, data
completeness, accuracy, and precision. DIA achieves excellent technical
reproducibility, as demonstrated by coefficients of variation (CVs) between
3.3% and 9.8% at protein level. Comparative analysis of different setups clearly
shows a high overlap in identified proteins and proves that accurate and
precise quantitative measurements are feasible across multiple sites, evenin a
complex matrix such as plasma, using state-of-the-art instrumentation. The
collected dataset, including the PYE sample set and strategy presented, serves
as a valuable resource for optimizing the accuracy and reproducibility of LC-

MS and bioinformatic workflows for clinical plasma proteome analysis.

Human blood and blood-derived components (i.e., serum and plasma)
reflect an individual“s health state and are routinely used for in vitro
diagnostics, often referred to as a liquid biopsy, to either monitor,
detect, predict, or rule out diseases. Plasma, the liquid blood compo-
nent, is obtained by removing cellular material from whole blood
through centrifugation in the presence of anti-coagulants such as
heparin, ethylenediaminetetraacetic acid (EDTA), or sodium citrate.
Plasma and serum are the most collected biofluids globally, easily
accessible and routinely taken from thousands of patients daily. As
such, they are valuable sources of (bio)markers reflecting the states of

various disorders and illnesses and has become the focus of pharma-
cological, biomedical, and clinical pursuits.

The vast majority of biological processes are controlled and car-
ried out by proteins. Liquid chromatography-mass spectrometry (LC-
MS) has evolved as the leading technology for investigating proteins
and analysing entire proteomes across diverse biological systems,
making it a powerful tool for (protein) biomarker discovery?. Within
their detection limits, MS-based proteomic approaches allow for the
unbiased and comprehensive characterization of all proteins in a sys-
tem with high analytical specificity. Most of these workflows employ a
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bottom-up approach, where sample proteins are first digested in vitro
with sequence-specific proteases, such as trypsin, to generate peptides
for analysis. Despite tremendous technological advances in the field of
MS over the past two decades, plasma proteome analysis by this
technology remains challenging due to the extremely high dynamic
range of plasma proteins, which spans over 11 orders of magnitude®*.
Albumin, the most abundant plasma protein at a concentration of
~70 mg/mL, constitutes around 55% of the total plasma protein con-
tent, while the 22 most abundant proteins collectively account for 99%
of the overall plasma protein mass®'. In MS-based bottom-up pro-
teomic workflows, the majority of quantified peptide intensities arises
from these highly abundant plasma proteins, significantly hindering
the detection and quantification of peptides derived from lower-
abundance proteins. As a result, in typical MS analyses of neat plasma,
only a few hundred classical plasma proteins can be reliably detected
and quantified across multiple studies**. These include proteins with a
functional role in blood such as albumin, apolipoproteins, immu-
noglobulins, and acute phase proteins, as well as members of the
coagulation cascade. Lower-abundance proteins, including those
derived from tissue leakage or signaling proteins such as cytokines,
often fall outside the dynamic range of detection spanning -4-5 orders
of magnitude on most of the current generation instrument
platforms*. Even when detected, quantifying low-abundant plasma
proteins remains challenging, as they are prone to lower signal-to-
noise ratios, poor ion statistics, and missing (peptide intensity) values
across runs, all of which contribute to higher variance and reduced
quantitation precision and accuracy®®.

Over the past two decades, significant efforts have been made to
reduce the dynamic range of plasma samples and enhance the depth of
plasma proteome coverage. Strategies such as immunoaffinity-based
depletion of abundant proteins’™, selective precipitation'?,
nanoparticle-assisted enrichment”” and magnetic bead-based isola-
tion of plasma extracellular vesicles'® enabled the identification of up
to ~4500 proteins in plasma. Despite their advantages, these methods
are often constrained by high costs, limited throughput, and
technique-specific biases”'®. Consequently, analysis of neat plasma
continues to be a commonly used approach in proteomic studies.

In clinical contexts, achieving accurate and reproducible quanti-
fication is essential. The discovery and verification of potential bio-
markers depend heavily on the dynamic range, accuracy, and precision
of quantitative measurements across large cohorts, multiple plat-
forms, and study centers. Over the past years, several intra- and
interlaboratory studies have addressed this issue using distinct
benchmark sample sets to assess quantitative reproducibility of dif-
ferent (label-free) proteomic LC-MS workflows or data analysis
tools™*° 2, Such benchmark samples can be generated by spiking
synthetic peptides or proteins into a matrix at known amounts® %,
mixing whole proteomes at distinct ratios”*'****° or a combination of
both?. Common to these sample sets is that they represent a ground
truth and allow either to optimize different steps of an LC-MS work-
flow, assess its qualitative and quantitative performance”, or conduct
cross-center comparisons®*, Hence, these samples are widely used,
e.g., for comparing software tools and data analysis workflows, as they
facilitate the selection of the best-performing quantitative data ana-
lysis pipeline for distinct LC-MS setups®®*°. Moreover, they allow the
evaluation of novel MS hardware®, facilitate the benchmarking of
software for data analysis®*?, and help optimize (data) processing
algorithms to improve quantitative precision and accuracy’. Addi-
tionally, they are a valuable tool for multilaboratory® and cross-
platform comparisons®****°, providing a snapshot of the technological
landscape and workflow performance at the respective study time-
point. Recently, Fréhlich et al.” introduced a mixed proteome dataset
designed to incorporate real-world inter-patient heterogeneity,
enabling the benchmarking of data-independent acquisition (DIA) data
analysis workflows in clinical settings, particularly for formalin-fixed

paraffin-embedded tissue samples. However, a ground truth bench-
mark set specifically for assessing quantitative accuracy and precision
in neat plasma analysis has yet to be established. Recently, the
CLINSPECT-M consortium, part of the German MSCoreSys clinical
proteomics initiative, initiated a round-robin study among its six
proteomic laboratories assessing current best practices for sample
preparation and LC-MS measurement for clinically relevant body fluids
such as plasma and cerebrospinal fluid*®.

In this work, we complement this effort by evaluating the quanti-
tative performance of neat plasma analysis across twelve different
partner sites of the MSCoreSys clinical proteomics research consortium
(https://www.mscoresys.de/), including different state-of-the-art LC-MS
instrument platforms. To this end, we introduce a benchmark set of six
samples based on a human tryptic plasma digest containing varying
amounts of tryptic digests of yeast and Escherichia coli proteomes (PYE).
The PYE benchmark set is an evolution of the hybrid proteome sample
set initially described by Kuharev et al.” and Navarro et al.’, addressing
the challenges posed by the high dynamic protein range typical for neat
plasma. Each participating site received and measured the PYE sample
set on their respective LC-MS platforms using data-dependent acquisi-
tion (DDA)- and/or DIA-based methods. Importantly, no particular
guidelines, protocols, or restrictions were enforced. All generated raw
data have been centrally analysed through a unified pipeline, using
MaxQuant** for DDA and DIA-NN’ for DIA data. The resulting dataset
clearly demonstrates that accurate and precise protein quantification
applying state-of-the-art MS-based proteomics is achievable, even within
the complex plasma matrix, across different instrument platforms and
multiple sites when applying DIA-based approaches.

Results
Study design and PYE benchmark sample set
The aim of the present study was to assess and benchmark qualitative
and quantitative reproducibility as well as the accuracy and precision
across multiple sites and instrument platforms using a benchmark
sample set that addresses the challenges of protein dynamic range in
neat plasma. To this end, we defined a multispecies sample set based on
a human tryptic plasma digest, containing varying spike-in levels of
tryptic-digested yeast and E. coli (PYE) proteomes. The PYE benchmark
set comprises six samples in total: PYE1 A and B, PYE3 A and B, PYE9 A
and B. In these samples, human plasma digest serves as a high dynamic
range background, whereas low-level spike-ins of E. coli and yeast tryptic
peptides mimic regulated proteins between two samples, A and B,
allowing to evaluate precision and accuracy of label-free quantification.
In samples PYE1 A and B, human plasma proteins account for 90% of the
total protein mass, and yeast and E. coli proteins for the remaining 10%
(Fig. 1a). Tryptic peptides were combined in the following ratios: sample
PYE A contains 90% w/w human, 2% w/w yeast, and 8% w/w E. coli
proteins. Sample PYE B is composed of 90% w/w human, 6% w/w yeast,
and 4% w/w E. coli proteins. To simulate the challenges of protein
dynamic range in clinical plasma samples, the samples PYE1 A and B
were further diluted using tryptically digested human plasma, thus
additionally reducing the spike-in levels of yeast and E.coli digests (see
Fig. 1a). PYE3 refers to a 1:3 and PYE9 to a 1.9 dilution of the PYEL sample
set, with PYE9 containing only 1.1% of non-human proteins. The samples
were centrally prepared and shipped to all participating sites on dry ice.
Shipped sample amounts depended on the LC-MS setup used at the
respective site. Per setup, all samples were to be analysed in six replicate
injections. Additionally, two blank injections had to be performed prior
to the sample runs to avoid carry-over from system quality control runs,
typically conducted using HeLa or K562 tryptic digests (see also method
section). MS raw data files were uploaded and analysed centrally using
either MaxQuant, for DDA, or DIA-NN, for DIA data.

In total, twelve study centers of the MSCoreSys consortium (sites A
to L; for an overview on site specific setups see Table 1) took part in the
round robin study, collecting 34 full PYE data sets (most of them, with a
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few exceptions, comprising six replicate measurements of samples PYEL
A, PYEL B, PYE3 A, PYE3 B, PYE9 A, and PYE9 B, see Table 1 and Sup-
plementary Data 1). Measurements were conducted on different
instrument platforms in either DDA and/or DIA mode, encompassing
1116 individual LC-MS runs. Overall, 13 DDA and DIA data sets were
acquired using the exact same LC-MS setup, allowing a direct compar-
ison of both acquisition modes. Mass spectrometers from various
manufacturers were used in the present study for data collection,
including instruments from ThermoFisher (Orbitrap Eclipse, Orbitrap
Exploris 480, Orbitrap Fusion Lumos, Q Exactive HF, Q Exactive HF-X),
Bruker (timsTOF Pro, timsTOF Pro2) and Sciex (zenoTOF). In total, seven
different LC platforms were used for peptide separation prior to MS
analysis, including the following models, Ultimate 3000, Vanquish Neo
and EASY-nLC 1200 from ThermoFisher, Evosep One (Evosep), nanoE-
lute (Bruker), nanoAcquity and M-Class from Waters Corporation. Most
of the LC systems were operated in the nanoflow range, four sites (sites
D, E, F, and K, see Table 1) included micro-flow LC-MS/MS analyses on
their Vanquish Neo LC and M-Class systems. Overall, 13 different LC-MS
setups were used, with the Ultimate 3000 being the predominant LC
platform and the Orbitrap Exploris 480 the prevalent MS instrument in
this study (see Fig. 1b, Supplementary Data 1).

PYE proteome coverage depends on PYE dilution, MS acquisi-
tion mode, overall analysis time, LC-MS setup and data proces-
sing software

To compare the performance of the different LC-MS setups, we first
evaluated the number of proteins and peptides that were identified in

each setting and sample (see Fig. 2a, b, Supplementary Figs. 1 and 2,
Supplementary Data 2). Overall, we observed a high variability in
protein and peptide identifications (IDs) between the different LC-MS
setups and acquisition modes as exemplarily shown for PYEI (Fig. 2a,
Supplementary Fig. 1a, Supplementary Data 2). IDs were markedly
lower for the DDA as compared to the DIA datasets: In case of DDA, IDs
ranged from 919 to 2759 protein groups (1743 protein groups and
15,835 peptides on average), whereas numbers of identified protein
groups varied between 1433 and 4653 (with an average of 3193
detected proteins and 29,259 peptides) in case of DIA. Moreover, DIA
approaches demonstrated superior reproducibility in terms of iden-
tified proteins and peptides, as exemplarily illustrated for the PYE1 A/B
set. On average, 84.2% of proteins were consistently identified across
all runs within each DIA setup, while this was the case for only 51.5% of
proteins (on average) within a DDA setup (Fig. 2a, Supplemen-
tary Data 2).

Besides the acquisition mode, the number of identified proteins
also depended on the analysis time, i.e., gradient length. For example,
the DIA dataset with the lowest number of IDs (L_nAcqu_tTOF) was
acquired running an 11 min gradient, whereas the gradient length was
102 min for the setup with the highest protein IDs (H_ulti_ex). Many
sites, however, used similar gradient lengths for the LC-MS analyses
ranging either between 29 and 48 min or around 60 and 70 min for DIA
and mainly around and above 50 min for DDA analyses. Interestingly,
averaging the ID numbers, we did not observe marked differences
between setups with a gradient length of 29-48 min (3235 protein
groups) and 60-70 min (3039 protein groups) in DIA mode. However,
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Fig. 1| Overview of the PYE sample set and the study design. a Left panel: The
PYE sample set was centrally prepared and consists of six different samples. A
tryptic digest of human plasma (orange) serves as background. Varying spike-ins
of tryptic E. coli (green) and yeast proteomes (violet) mimic differentially regu-
lated proteins between samples with the denominations A and B enabling the
evaluation of label-free quantification in a plasma background. Exact sample
compositions are provided in the black boxes (percent of total protein mass). To
resemble the challenges of protein dynamic range in clinical plasma samples,

. Orbitrap analyzer

TOF analyzer

No. of data sets

sample set PYE1 was further diluted with tryptic human plasma reducing the
proportion of tryptic E. coli and yeast proteomes in the sample sets PYE3 and
PYE9. Middle panel: PYE samples were shipped for LC-MS analysis to twelve dif-
ferent sites of the MSCoreSys network. Right panel: Subsequent raw data and
statistical analyses of all acquired data sets were conducted centrally. b Overview
of instrumentation and LC-MS setups used in the round robin study. Parts of

a partially generated in Biorender (https://BioRender.com/9vhkffx, https://
creativecommons.org/licenses/by-sa/4.0/ for R logo).
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Table 1| Overview of the collected datasets in the present
multicenter study

LabID LC system MS Gradient DIA® DDA?
length [min]

A Ultimate 3000 Exploris 50 yes (6)  yes (6)

A EvoSep Exploris 44 yes (6)  yes (6)

B Ultimate 3000 HF 90 yes (6)  yes (6)

B Ultimate 3000 HFX 90 yes (6)  yes (6)

© nanoElute timsTOF Pro 70 yes yes (6)

(6)°
D Ultimate 3000 Orbitrap 60 yes (6)  yes (6)
Eclipse

D Vanquish Exploris 60 yes (6)  yes (6)
Neo (MF)

E Ultimate 3000 Fusion Lumos 60 yes (6)  yes (6)

E Vanquish Exploris 60 yes (5)  vyes (5)
Neo (MF)

F Vanquish Orbitrap 60 yes (6)
Neo (MF) Eclipse

G Easy nLC 1200 timsTOF 30 yes (6)  yes (6)

G Ultimate 3000 Exploris 48 yes (6)  yes (6)

H Ultimate 3000 Orbitrap 120 yes (6)  yes (6)

Eclipse

H Ultimate 3000 Exploris 102 yes (6)  yes (6)

| Easy nLC 1200 Exploris 44 yes (6)

J Easy nLC 1200 timsTOF 44 yes (3)

K M-Class (MF) ZenoTOF 20 yes (6)

L nanoElute timsTOF Pro2 35.5 yes (3)

L nanoAcquitiy timsTOF Pro 1 yes (3)

L Ultimate 3000 Exploris FAIMS 29 yes (3)

L Ultimate 3000 Exploris 29 yes (3)

“Numbers in brackets indicate the numbers of replicate measurements conducted, i.e., three to
six replicates of each PYE sample were acquired per laboratory setting.

®One raw data file (C_nE_tTOF PYE3 B replicate 1 DIA) had to be excluded, as number of identi-
fications in DIA-NN were below 60% of average as compared to the remaining replicates of this
sample and setup.

for some DIA setups with similar analysis times, we observed marked
differences in the protein ID rate, i.e., proteins identified in relation to
gradient length (see Fig. 2a). This can likely be attributed to the lab-
specific differences in instrumentation and LC-MS method settings.
For example, most of the TOF datasets were acquired using 29-48 min
gradients, while the 60-70 min datasets constitute mainly Orbitrap
data. Among the 60-70 min datasets the two microflow setups
(D_Vang_ex and E_Vang_ex) show slightly lower protein IDs (on average
around 2400 proteins) as compared to the other setups with
similar gradient length (averaging 3465 protein groups). In contrast to
our expectations, we observed no significant systematic influence of
peak capacity, cycle time, or signal response on the number of iden-
tifications. Overall, we found an overlap of 683 proteins (from a total of
3506 proteins) that were identified in all DDA datasets and 928 out of
5785 proteins that were shared across all DIA runs for PYEL Over 1600
proteins were shared in 90% of DIA datasets, i.e., across 18
setups. Moreover, 541 proteins were consistently detected in all 34 LC-
MS setups (Fig. 2c, d, Supplementary Fig. 3). These numbers are, of
course, impacted by setups with lower proteome coverage.
When comparing different instrument setups with similar coverage or
those with fewer IDs to those with a deeper proteome coverage, we
observed a significant overlap of identified proteins, reaching in many
cases up to 80-90% (Supplementary Fig. 3), highlighting the repro-
ducibility of LC-MS based plasma proteomic analyses across
different labs.

The choice of processing software can significantly impact the
number of peptide and protein IDs, owing to differences in search and
protein inference algorithms. To assess the influence of software on
IDs and to process both, the DIA and DDA data, with the same tool, we
additionally analysed the whole round robin dataset with the latest
version of FragPipe (version 23, see Supplementary Figs. 4-6). In case
of the DDA analyses, a marked increase in proteome coverage and
reproducibility was observed, as reflected by an enhanced overlap
among technical replicates and across distinct LC-MS instrumentation
setups compared to the MaxQuant results. In contrast, proteome
coverage was markedly lower for DIA as compared to the DIA-NN
analysis, which on average yielded around 25% more protein IDs
compared to FragPipe. Hence, the gap between DDA and DIA is by far
not as prevalent when processing the dataset in FragPipe with some
matching setups showing similar numbers of IDs. Nevertheless, on
average, IDs were higher in DIA mode (around 17%) comparing all
matching DDA and DIA runs. Of note, IDs across the different LC-MS
setups show similar patterns as compared to MaxQuant and DIA-NN,
with the same setups achieving highest and lowest numbers of IDs,
respectively.

Across all settings, the highest number of proteins was con-
sistently identified in PYE1 A/B as compared to PYE3 A/B and PYE9 A/B
samples, which is to be expected as the percentage of E. coli and yeast
proteins is highest in the PYE1 set. Regarding species-specific IDs, the
numbers of detected human plasma proteins were similar between
PYEL, PYE3, and PYE9 within each setting, while we observed a marked
drop in IDs for E. coli and yeast proteins from PYE1 to PYE3 and PYE9
(Fig. 2b, Supplementary Data 3). Independent of the LC-MS setting
used, a three-fold reduction of spike-in levels of £. coli and yeast tryptic
digests reduced the number of E. coli and yeast protein IDs around
1.85-fold in DDA and 1.7-fold in DIA mode between PYEL and PYE3 and
around 2.35- (DDA) as well as 2-fold (DIA) between PYE3 and PYE9,
respectively.

This is also reflected when integrating the results from all DDA and
DIA datasets across the different sites (Fig. 3a, b). For both, DDA and
DIA mode, the dynamic range of identified proteins is similar between
PYEL, PYE3, and PYE9, spanning four orders of magnitude in the case of
each species, except for human plasma proteins identified by DIA
which cover six orders of magnitude. However, with each dilution step
from PYEL to PYE9, a distinct number of E. coli and yeast proteins falls
below the detection limit, resulting in a reduced proteome coverage
for both, DDA and DIA datasets. In DIA mode, we observed a 1.3- (E.
coli) to 1.4-fold (yeast) decrease in protein IDs in PYE3 and a 2.0- (E. coli)
to 2.5-fold (yeast) decrease in PYE9 as compared PYEL In case of DDA,
the drop was slightly higher. Here, ID numbers decreased by factors of
around 1.6 in case of PYE3 and 2.6 for PYE9 as compared to PYEI1 for
both yeast and E. coli proteins. Overall, abundances of commonly
identified proteins show a high correlation for both acquisition modes
between the PYE], PYE3 and PYE9 sample sets (Fig. 3¢, d). As antici-
pated from the serial dilution between sample sets, point clouds per-
taining to £. coli and yeast proteins center around the expected ratios
indicated by the dotted lines.

Notably, the design of the PYE sample additionally allows to
determine the lower limit of detection (LOD) and linearity for thou-
sands of analytes as a function of their signal intensities by comparing
label-free quantification (LFQ) values of individual proteins of E.coli
spike-ins across six dilution levels, covering a 18-fold difference
between PYE_1A and PYE_9B (Fig. 3e, f). Overall, both DDA and DIA
showed good linearity across all six samples. In addition, our analysis
revealed that the 10% lowest abundant E.coli proteins (as defined by a
low LFQ value in PYE1) already fall below detection limit in the PYE3_A
sample in DDA, while they remain detectable in both PYE3 A and
PYE3_B samples in DIA mode, indicating a lower LOD for DIA
quantification.
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Fig. 2 | Number of identified proteins in the PYE sample set for different LC-MS
setups and sites. a Number of identified protein groups in the PYE1 sample set for
the different setups. Colours indicate the number of proteins identified in all
replicate runs per setup (complete, black), equal and more than 50% of runs (grey)
as well as sparse (below 50%, orange) and unique identifications (red). White
numbers indicate proteins identified in all replicate runs and red dots the number
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identified protein groups across the whole PYE dataset (PYE1, PYE3, PYE9) for each
setup split by species (human: orange, yeast: violet, £. coli: green). Numbers refer to
proteins identified in PYE1 (Supplementary Data 3). Upset plots showing the
overlap of identified proteins in the PYE1 sample set by ¢ DDA- and d DIA-based
approaches across multiple sites and LC-MS platforms. Proportions of human
(orange), yeast (violet) and E. coli (green) proteins are indicated within the bars.
Source data are provided as a Source Data file.
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DIA workflows show superior quantitative performance over

DDA-based approaches independent of the LC-MS setup used

As reproducibility is a key aspect in large-scale proteomic studies and
we observed a strong influence of the acquisition mode in terms of
proteome coverage, we next compared the quantitative performance
between the different DIA and DDA datasets in more detail. In terms of
run-to-run reproducibility, i.e., reproducibility between replicate

injections, DIA-based LC-MS workflows markedly outperformed the
DDA-based methods independent of the LC-MS setup used. Median
coefficients of variation (CVs) of protein abundances ranged between
6.4% and 54.7% (average 15.4%) for DDA and between 3.3% and 9.8%
(average 5.9%) for DIA analyses as exemplarily shown for PYEL A in
Fig. 4a, b (similar numbers were observed for PYEL B, Supplementary
Fig. 7a,b, Supplementary Data 4). Among the DIA datasets, data
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Fig. 3 | Protein dynamic range and protein intensity distribution across the full
PYE sample set integrating data from all sites. a, b Dynamic range of identified
proteins in PYEL, PYE3 and PYE9 across the full dataset (i.e., summarizing normal-
ized protein abundances from all LC-MS runs) split by species and acquisition
mode. Panel (a) displays the dynamic range for the DDA and panel (b) for the DIA
dataset. To generate the dynamic range plot, protein intensities were integrated
across all different LC-MS setups and divided by the maximum observed intensity,
set to 100%. Correlation of normalized protein abundances between PYE1, PYE3 and
PYE9 for ¢ the DDA and d DIA datasets. Protein intensities were averaged and
normalized separately for each LC-MS setup to the highest LFQ intensity of each
individual setup. Dotted lines indicate the expected values for the comparison

between the different PYE dilutions. Coefficient of determination (R?) is displayed
in the graphs for human (orange), yeast (violet), and E. coli: (green) proteins. Lin-
earity of E. coli protein LFQ abundances analysed in DDA (e) and DIA mode (f),
exemplarily depicted for two setups, A_ulti_ex and G_nLC_tTOF. The design of the
PYE sample set allows to compare LFQ values of E. coli spike-ins across six dilution
levels. We binned proteins according to their LFQ abundance values (averaged
across six replicate injections) in sample PYEIA into 10 equal-sized bins calculating
for each bin the median value (red dot). Median abundance values for these bins
(i.e., associated with the proteins assigned to initial bins) were calculated and are
plotted for all six PYE samples. Light grey lines represent individual protein
response curves. Source data are provided as a Source Data file.
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Fig. 4 | Reproducibility of LC-MS analyses. Coefficients of variation (CVs) of
protein abundances for replicate analyses of sample PYEL A were calculated for
each LC-MS setup revealing lower quantitative reproducibility for a DDA as com-
pared to b DIA approaches. Boxplot center lines represent the median value,
boundaries the interquartile range and whiskers the 5th/90th percentiles of the
dataset. The red line marks 25% CV and green line 10% CV. For detailed information
on the number of replicate injections for each setup (n =6 in most cases) see
Table 1. ¢, d Evaluation of RT stability (displayed as CVs of RT, calculated for sample
PYEL, n=12 in most cases, six technical replicates for each, PYE1 A and PYE1 B, for

Average Peak Capacity

details see Table 1) shows reproducible elution of peptides for most of the LC
setups. Center line in the boxplots represents the median value, bounds of boxes
the interquartile range and whiskers the 5th/90th percentiles of the dataset. ¢ the
RT CVs for the DDA and panel (d) for the DIA datasets. Median RT CVs are plotted
against the chromatographic peak capacity for each chromatographic setup for the
e DDA and f DIA datasets. Dot sizes indicate gradient length. Gray: Nanoflow, red:
Microflow setup, see also Supplementary Data 4. Source data are provided as a
Source Data file.

derived from timsTOF instruments showed slightly higher variance
(average of median CVs: 8.16%) as compared to the other DIA setups
(4.87%). Similar trends were also observed for the data processed in
FragPipe, where the DIA-based methods display lower CVs as com-
pared to their DDA-based counterparts (Supplementary Fig. 7c, d).
As very different chromatographic setups were used in the
present study, including those at higher flow rates (sites D, E, F, and

K), we additionally assessed chromatographic performance evaluat-
ing the retention time (RT) stability across replicate runs, an essential
factor particularly for label-free quantitative workflows where fea-
tures are mapped across multiple runs. Overall, the peptide elution
behavior was stable and highly reproducible for most of the LC set-
tings, with median RT CVs below 0.35% across all 34 setups (Fig. 4c,
d). Only few setups (nine in total) displayed slightly higher RT
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variance with median values above 0.35%, including two setups
(D_Vanq_ex DDA, I_nLC_ex DIA) with markedly higher RT CVs (0.99%
and 1.19%) compared to the other setups. In contrast to our expec-
tations, we observed no marked differences regarding RT CV or peak
capacity (Fig. 4e, f) between the micro- and nano-flow settings in
the present dataset. We further noted that, independent of
gradient length or flow rate, a less reproducible peptide elution, i.e.,
higher RT CVs, also correlated with an overall lower chromato-
graphic peak capacity (Fig. 4e, f. Supplementary Data 4). This
observation was slightly more prevalent for the DIA as compared to
the DDA dataset. Particularly DIA methods can benefit from a high
peak capacity, i.e., good chromatographic performance, as many
downstream processing tools use chromatographic elution profiles
for spectral deconvolution and mapping of precursor and
product ions.

The present multicenter study comprises 13 matching DDA and
DIA datasets, where exactly the same LC-MS setup was used for data
acquisition (i.e., analysing the samples at the same site on the same
LC-MS platform, with the same LC method and column setup, see
Table 1 and Supplementary Data 1), which allows a direct back-to-
back comparison of the two acquisition modes (Fig. 5). The majority
of these datasets were acquired on Orbitrap platforms. Summarizing
the quantitative results of the PYE1 analysis across all 13 LC-MS set-
ups, we found that DIA approaches show on average higher accuracy
and precision as compared to the DDA-based methods (Fig. 5a,
Supplementary Data 5): The interquartile range (IQR, Q75-Q25) of the
global distribution of log-transformed ratios (log,(PYE1 A/PYE1 B)) of
protein abundances, averaged across all 13 DIA datasets, ranged
between 0.07 for plasma, 0.16 for E. coli and 0.22 for yeast proteins.
The variance was higher in the case of DDA (IQRpjasma=0.11, IQR,
coti=0.19 and IQRyeasc = 0.27). Moreover, calculated values (averaged
across all 13 datasets) were closer to the expected ratios for plasma
and for E. coli proteins in the DIA runs as compared to the DDA
analysis. Only in case of yeast proteins, the DDA measurements
showed on average better accuracies as compared to DIA with an
absolute difference from the expected ratio of 0.14 versus 0.18 in
case of DIA. This effect can most likely be attributed to the higher
proteome coverage in DIA, where particularly medium and low-
abundant proteins, that are not detected by DDA, can be still iden-
tified and quantified (Fig. Sb-e). Overall, similar trends in terms of
quantitative precision and accuracy can also be seen for PYE 3 and
PYE 9 where in most cases, DIA methods outperform DDA-based
approaches, as exemplarily shown for an Orbitrap as well as a tim-
sTOF setup in Fig. 5b, ¢ and Table 2. Interestingly, both timsTOF
setups (C_nE_tTOF and G_nE_tTOF) displayed a systematic error of
accuracy values in the same direction for both the DDA and DIA
dataset.

Additionally, we compared the data completeness for identified
yeast proteins across all 13 DDA and DIA datasets. To this end, we
mapped the yeast proteins identified in the PYEL B sample, ranked by
their abundance, to those identified in PYE1 A summarizing the
results across all 13 datasets. In line with the higher proteome cov-
erage and overlap between the technical replicates (Fig. 2a), the 13
DIA datasets showed a markedly higher data completeness for the
yeast spike-in as compared to their matching DDA datasets (Fig. 5d,
Supplementary Fig. 8): While the DDA dataset displayed 50% missing
values already at protein rank 828, the DIA data reached a value of
50% missingness at protein rank 1637 (Fig. 5d). Additionally, we
directly compared the two datasets mapping the yeast proteins
identified in sample PYE1 B (Fig. 5e). Here, 50% missing values
occurred at protein rank 742, and around 1200 yeast proteins were
uniquely detected in the DIA PYE1 B dataset, further highlighting the
superior performance of DIA compared to DDA-based methods in
the present study.

Comparison of DIA workflows shows robust quantitative per-
formance for all LC-MS setups and highlights the challenges of
accurately quantifying low-abundant proteins

Next, we evaluated the quantitative performance of the 20 different
DIA setups. All LC-MS setups demonstrated excellent performance in
terms of accuracy and precision for label-free quantification of highly
abundant proteins in the PYE sample set (Fig. 6, Supplementary
Figs. 9-12). However, for proteins in the low abundant range accurate
quantification can still be challenging. Yeast proteins make up the
smallest proportion of the PYE samples A and B by quantity. Moreover,
yeast proteins are spiked in at a ratio of 1:3, while the ratio for E. coli
proteins is 1:2, making it even more challenging to estimate the correct
ratio between samples A and B for yeast as compared to E. coli or
human proteins. This is also reflected in the results. For example,
variance is markedly higher in the PYE1 set for yeast as compared to E.
coli proteins (IQR of the global distribution of log,(FC) values across all
20 datasets: IQRyease=0.23 and IQR, .,;=0.17, see also Fig. 6a and
Supplementary Data 6). Upon additional dilution of the yeast and E.
coli proteomes in the PYE3 and the PYE9 samples (Fig. 6b, Supple-
mentary Fig. 12), variance increases for both species (to IQRyeas: = 0.27
and IQRg, .,;=0.19 in the PYE9 set). Interestingly, precision slightly
improves for human proteins from PYEL to PYE9, likely due to a
decrease of the yeast and E.coli proteome background. Particularly in
the lowest abundance tertile accurate and precise quantification still
remains challenging. This becomes evident when looking exclusively
at the log,(FC) distributions of the proteins in the low abundance
range (i.e., the tertile of the dataset encompassing the proteins with
the lowest abundance values, Fig. 6¢, d). Across all dilutions, com-
prising sample sets PYE1 to 9, accuracy and precision are markedly
lower, particularly for E.coli and human proteins, in the lowest abun-
dance tertile as compared to the full dataset that includes also the mid
and high abundant proteins (Fig. 6a, b Supplementary Fig. 12).

Looking at the full PYE dataset (Fig. 6e), accuracy follows a similar
trend as the precision. Averaging across all datasets, accuracies of
calculated log,(FC) values for human proteins improved from the PYE1
to the PYE9 sample set (with an average absolute difference between
median and expected values of 0.10 in PYE1 and 0.01in PYE9; Fig. 6a, b,
Supplementary Data 6). Comparing yeast and E. coli proteomes,
deviations from the expected ratios are markedly higher for yeast as
compared to E. coli proteins in all sample sets, i.e., PYE1, PYE3 and PYE9
(Fig. 6e). Accuracy is similar for yeast proteins between samples PYE1,
PYE3 and PYE 9, whereas there is a slightly higher deviation from the
expected values in PYE9 as compared to PYEL for E. coli proteins.

Interestingly, most TOF setups show a similar trend regarding
their LFQ values, which display a consistent shift from the expected
values for yeast and human proteins in the same direction (Fig. 6a, b,
e), indicating a potential issue with background correction for the TOF
data overestimating LFQ abundances for low abundant proteins’. This
effect can potentially be attributed to an overall higher background in
TOF mass spectra as compared to those derived from Orbitrap plat-
forms, or alternatively to different background subtraction algorithms.
For the Orbitrap LC-MS setups, we observe varying effects. For
example, the two micro-flow setups (D_Vang_ex and E_Vang_ex), show
the highest accuracy and precision for human proteins as compared to
all other setups. However, deviations from the expected log,(FC)
values point to an underestimation of LFQ values for low-abundant
yeast and E. coli proteins. For other Orbitrap setups, e.g., D_ulti_ecl,
H_ulti_ecl, H_ulti_ex, we observe a systematic error (in PYE1 and PYE3)
of the calculated log,(FC) values for all species towards a higher
log,(FC) than expected.

To better understand some effects, we additionally evaluated for
the yeast proteins if some metrics, such as data points per peak,
number of identified proteins, peak capacity, or mean CV, correlate
with quantification accuracy and precision at a proteome-wide scale
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Fig. 5| Lower number of missing values and better quantitative performance of
DIA- as compared to DDA-based methods. a Violin plots of log-transformed
ratios (log,(PYEL A/PYE1 B)) of protein abundances for matching DDA and DIA LC-
MS setups. Solid lines within the violin plot indicate the median log,(A/B) value for
each setup and red dashed lines the expected log,(A/B) values for human (orange),
yeast (violet), and E. coli (green) proteins (Supplementary Data 5). Log-transformed
ratios (log,(A/B)) of proteins were plotted over the log-transformed intensity of
sample A for DDA and DIA data acquired with the same LC-MS setup on b an

Protein abundance rank (PYE1_B)

Protein abundance rank (PYE1_B) DIA

Orbitrap as well as ¢ a timsTOF platform. d Percentage of missing values for yeast
proteins in PYEL A as compared to PYEL B (ranked by protein abundance) for the
DDA and DIA dataset. e Percentage of missing values for yeast proteins in the PYE1 B
DDA dataset as compared to the PYEL B DIA dataset dependent on protein abun-
dance across all 13 LC-MS setups displayed in panel (a). d, e X-axis: Rank as defined
by the average normalized intensity (INTpsotein/INTmax) across all 13 setups. Y-axis:
Missingness (1-(number of detections/number of runs)) across all 13 setups and
injection replicates as percent values.
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Table 2 | Metric summary for the datasets shown in Fig. 5

Species DDA DIA Sample
IDs Accuracy® Precision® IDs Accuracy® Precision®

Lab A ulti_ex

E.coli 833 0.19 0.24 1492 -0.04 0.17 PYE1

Human 175 0.19 0.19 399 0.06 0.10

Yeast 982 0.23 0.27 2183 0.17 0.18

E.coli 481 0.05 0.7 1061 -0.03 0.19 PYE3

Human 186 0.09 0.08 466 0.08 0.14

Yeast 569 0.09 0.29 141 0.21 0.22

E.coli 217 0.09 0.19 591 -0.02 0.16 PYE9

Human 187 0.10 on 460 0.00 0.15

Yeast 240 0.15 0.38 704 0.02 0.21

Lab G nLC_tTOF

E.coli 1095 0.15 0.22 1614 0.07 0.14 PYE1

Human 246 0.26 0.16 368 0.19 0.12

Yeast 1548 0.37 0.32 2530 0.42 0.22

E.coli 73 -0.02 0.18 1218 -0.07 0.14 PYE3

Human 226 0.07 0.09 393 0.07 0.09

Yeast 904 0.17 0.33 1742 0.36 0.26

E.coli 456 0.02 0.24 749 -0.09 0.18 PYE9

Human 279 0.1 0.13 412 0.06 0.14

Yeast 565 0.23 0.29 900 0.29 0.24

The table summarizes number of identified protein groups, median accuracy and precision (Q075-Q025) for sample sets PYE1 to PYE9 analysed in DDA and DIA mode on an Orbitrap (site A) and a

timsTOF setup (site G). Full data across all sites is found in Supplementary Data 5.

“Accuracy: deviation of the experimental log-transformed ratio (log,(A/B)) of protein abundances from the expected value, Q050.

®Precision: Q075-Q025.

(exemplarily shown for PYEL, Fig. 6f and Supplementary Fig. 13, Sup-
plementary Data 7) and found that the median deviation from expec-
ted values slightly increased in datasets with higher ID numbers.
Moreover, in datasets that display higher accuracies, more data points
were recorded across a chromatographic peak. Interestingly, we
observed a slightly opposing trend regarding the precision (Supple-
mentary Fig. 13), which improved when higher numbers of proteins
were identified. Other factors, i.e., mean CV or data points per peak,
did not correlate with improved precision, i.e., lower variance.

Interlaboratory LC-MS analyses employing identical setups and
instrumental parameters demonstrate robust method
transferability
To leverage the advantages of multicenter studies, particularly
regarding method transferability and interlaboratory reproducibility,
we re-analysed the PYE1 sample set at site L using the Ultimate/Exploris
DIA configurations from sites G and H (G_ulti_ex, H_ulti_ex), as well as
the EASY-nLC 1200/timsTOF DIA setup from site G (G_nLC_TOF). Re-
analysis of the PYE1 sample at site L, using the LC-MS configurations
from the original sites, yielded highly comparable numbers of protein
and peptide identifications (Fig. 7a) with substantial overlap (Fig. 7b),
effectively demonstrating the interlaboratory transferability of the
methods. Additionally, the quantitative profiles closely mirrored the
distribution patterns observed in the original round robin dataset
(Fig. 7c). Of note, the H_ulti_ex and G_nLC_tTOF DIA setups from sites G
and H yielded the highest proteome coverage in the round robin study.
In line with the round robin data, remeasurements at site L also pro-
vided lower proteome coverage for the G_ulti_ex setup, which uses the
same LC-MS and column setup as H_ulti_ex, but half the analysis time,
i.e, 60 min versus 120 min and slightly different DIA method with
adapted lower cycle time (see Supplementary Data 1).

To further explore how the number of IDs is influenced on a dis-
tinct platform, we additionally conducted a back-to-back comparison

of the timsTOF setups from sites G and L. G_nLC_TOF, the timsTOF
setup providing the highest IDs, uses an lonOpticks Aurora column
(75 um ID x 25 cm) for peptide separation running a 30 min gradient at
300 nL/min (Fig. 7d, e). We analysed the PYE1 sample using the MS
method of site G but the LC setting from site L (Bruker PepSep setup,
150 um ID x 25 cm, 35.5 min gradient at 850 nL/min). This resulted in a
marked drop in the number of identified proteins and peptides
(Fig. 7d, e). In contrast, we observed no marked differences in IDs
between the MS methods from sites G and L (30 Da versus 25 Da fixed
window schemes, different IMS range and cycle time). These data
clearly indicate, that the LC setup used by site G (lonOpticks Aurora
column 75 um ID x 25 ¢cm, 30 min gradient at 300 nL/min, final amount
of 28% (v/v) ACN) outperforms the conditions used by site L in the
round robin study (Bruker PepSep column 150 um ID x 25 cm, 35.5 min
gradient at 850 nL/min up to 38% (v/v) ACN).

To evaluate whether the findings from the PYE analyses are
applicable to native plasma samples, we analysed a neat plasma sample
without any spike-ins across three different sites using four different
Orbitrap-based LC-MS setups from the round robin study (Fig. 7f, g).
Consistent with the results obtained from the PYE analyses, we
observed similar trends regarding the number of IDs as compared to
the round robin study with a high degree of overlap (Fig. 7g). In line
with the round robin study, the setup with the longest gradient and
analysis time, i.e., H_ulti_ex, provided the best proteome coverage also
for the neat plasma sample. This clearly demonstrates that depending
on the scope of a (clinical) study one has to balance proteome depth,
quantitative performance, and sample throughput when choosing an
LC-MS setup for plasma analysis.

Discussion

Over the past two decades, plasma proteomics has evolved sig-
nificantly, progressing from basic protein cataloguing to sophisticated
workflows that quantify thousands of proteins with high
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Fig. 6 | Quantitative metrics of the DIA dataset acquired with 20 different LC-
MS setups. Violin plots of log-transformed ratios (log,(A/B)) of protein abun-
dances for a the full PYE1 and b PYE9 set (Supplementary Data 6). Violin plots of
log-transformed ratios (logx(A/B)) of protein abundances in the lowest intensity
tertile for c the PYEL and d PYE9 set. Solid black lines within the violin plot indicate
the median log,(A/B) value for each setup and red dashed lines the expected
log,(A/B) values for human (orange), yeast (violet), and E. coli (green) proteins.

e Deviation of the median log-transformed ratio (log>(A/B)) of protein abundances

from the expected value. Plots summarize data for human (orange), yeast (violet)
and E. coli proteins (green) for the PYEL, PYE3 and PYE 9 datasets. f Correlation of
median accuracies (calculated for yeast proteins in the PYE1 set) with other metrics
such as number of identified proteins (left), median CV [%] of protein abundances
(middle) and number of datapoints acquired across the chromatographic peak
(right panel). Dot sizes indicate gradient length. Blue: Orbitrap, orange: TOF ana-
lyzer, see also Supplementary Data 7. Source data are provided as a Source

Data file.
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Fig. 7 | Reproducibility and inter-laboratory transferability of methods.

a Numbers of identified proteins and peptides in the PYEL samples comparing data
from the round robin study with remeasurement using the same setup as indicated
in site L (n =12, six technical replicates for each, PYE1 A and PYE1 B). b Overlap of
identified protein groups between the round robin data and the remeasurements in
site L. ¢ Violin plots of log-transformed ratios (log,(A/B)) of protein abundances in
PYEL for the round robin data and the remeasurements at site L. d Numbers of
identified proteins and peptides in the PYEL samples comparing the nLC_tTOF
round robin data from site G with remeasurements in site L using different LC and
MS settings (as indicated in the table on the right; n =12, six technical replicates for

each, PYEL A and PYE1 B). e Upset plot depicting the overlap of identified protein
groups from the measurements in (c). f Numbers of identified proteins and pep-

tides in neat plasma samples (without spike-ins, n = 6 replicate injections) analysed
at three different sites using LC-MS setups as indicated (for more details see Sup-
plementary Data 1). LC-MS setups G_ulti_ex and H_ulti_ex were used at the respec-

tive sites as indicated (light blue) as well as at site L (darker blue). g Upset plot

depicting the overlap of identified protein groups from the measurements in (g).
Source data are provided as a Source Data file. In panels (a, d, f) points represent
individual injections; bars and error bars show mean + sd.
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precision'®*?°, Despite these advancements, plasma remains a chal-
lenging sample matrix for LC-MS-based proteomics due to its tre-
mendous dynamic range**. High-abundant proteins, such as albumin
and immunoglobulins, can overshadow lower-abundance proteins,
many of which hold potential as biomarkers for disease. Early plasma
proteomics studies using DDA-based methods identified typically only
a few hundred proteins®*°, with a bias toward high-abundant ions and
inconsistent detection of low-abundance peptides across analyses.
Workflows incorporating off-line fractionation and depletion strate-
gies improved proteomic depth, extending coverage to over 1000
proteins identified per sample, albeit with significant time costs'*".
DIA-based approaches address challenges of dynamic range and
reproducibility by capturing all ions in a mass-to-charge range without
bias", thereby improving consistent and reproducible detection of
low-abundance proteins. Coupled with high-resolution MS, DIA
enables robust, efficient identification of over 500-1000 proteins
from neat plasma, minimizing fractionation needs and advancing
biomarker discovery in large-scale studies***>. While some studies
show DIA outperforms DDA in plasma proteomics by capturing a
broader ion range and enhancing low-abundance protein
quantification*!, systematic comparisons across various LC-MS plat-
forms are limited. Such research is essential, as differences in LC and
mass spectrometer hardware configurations affect resolution, sensi-
tivity, and scan speed, impacting DIA and DDA performance. Addi-
tionally, variations in LC parameters, including gradient length,
column and flow rate, also influence peptide separation and
detection®*¢, Despite the high potential of LC-MS proteomics for
protein identification and quantification, its diagnostic use is limited
by a lack of standardized workflows and validation processes required
for accreditation**’. Cross-platform studies would clarify how different
parameters affect DDA and DIA, guiding method selection for stan-
dardization and demonstrating each method’s practical benefits
across diverse workflows for plasma proteomics.

Here, we designed and conducted a multicenter study including
twelve partner sites of the German research cores for mass spectro-
metry in systems medicine (MSCoreSys) to assess label-free quantifi-
cation performance on a benchmark sample set, simulating the high
protein dynamic range typical of neat plasma. Including multiple sites
and a diverse range of LC-MS setups, with data centrally analysed using
standardized software (MaxQuant for DDA and DIA-NN for DIA, Frag-
Pipe for both acquisition modes), lends robustness to our findings. We
focused on critical parameters such as intra- and inter-laboratory
reproducibility, highlighting proteins consistently detected across LC-
MS platforms at various sites. Additionally, we evaluated the total
number of quantified proteins, quantitative reproducibility, data
completeness, and the precision and accuracy of quantification.

Unlike previous benchmark studies that used a HelLa digest as a
matrix”’, we generated a multispecies sample set based on a human
tryptic plasma digest with varying spike-in amounts of tryptic digests
of yeast and E. coli proteomes. This effectively simulates the high
protein dynamic range of human plasma and the low abundance of
potential biomarker candidates**. Specifically, the initial sample set
(PYE1 A/B) was diluted incrementally at a 1:3 ratio with a human tryptic
plasma digest, reaching maximum dilution in PYE9 A/B, where human
plasma proteins constituted 98.9% of the total protein mass, with yeast
and E. coli proteins comprising the remaining 1.1%. Notably, even at
these low spike-in levels, current-generation instrument platforms
provided precise and accurate label-free quantification of several
hundreds of yeast and E. coli proteins in the present study. Our analysis
of proteome coverage across various LC-MS setups, acquisition
modes, and PYE sample dilutions showed that DIA consistently out-
performed DDA in protein and peptide ID numbers, with DIA work-
flows offering greater run-to-run reproducibility and higher
consistency in protein identification. Notably, the detection of hun-
dreds of non-human proteins across the full dynamic range indicates

that current DIA based proteomic platforms are likely to cover the
entire plasma proteome in the upper 3-4 orders of magnitude of
dynamic range. Compared to DDA, DIA-based workflows achieved up
to eight times higher proteome coverage, improved quantitative
reproducibility, and significantly fewer missing values, consistent with
previous studies***%, However, identifications on the protein as well
as peptide level can be significantly impacted by the software tool and
settings used for data processing and database search. The gap in
proteome coverage between the DDA and DIA dataset markedly
decreased upon data processing in FragPipe highlighting the impor-
tance of exploring different software tools and parameters for data
analysis when planning a (clinical) study. Overall, our data demon-
strate that a technical reproducibility between replicates with less than
6% CV are achievable across different setups and instrument platforms
using DIA-based approaches. This indicates that precise label-free
quantification is feasible even in a complex matrix such as plasma
using state-of-the-art workflows. This high precision and accuracy in
label-free quantification underscore DIA as the preferred acquisition
method for the analysis of plasma and other high-dynamic range
proteomes using LC-MS. Interestingly, while DIA excelled in identifi-
cation and quantification metrics, our study also revealed that longer
gradient times generally led to higher ID rates. However, differences in
the LC-MS setup including, for example, instrument type, column
characteristics, etc., more profoundly affected detection rates, even
with similar gradient durations. Notably, all participating sites used
chromatographic setups that were optimized for plasma proteomics
to provide optimal sensitivity, reproducibility, and data quality. Opti-
mizing chromatography is thought to be particularly important in DIA
due to its continuous, wide-window sampling, where optimal peak
sharpness and separation are essential for capturing high-quality
fragment ion spectra and maximizing identification rates. However, in
contrast to our expectations, we did not observe a significant corre-
lation of chromatographic parameters, i.e., peak capacity or retention
time stability, with the respective proteomic coverage or quantitative
metrics. This may likely be attributable to the multiparametric setup of
the participating labs and the high dynamic range of the PYE
sample set.

Although challenges remain in accurately quantifying low-
abundance proteins in plasma proteomics, our findings underscore
the significant improvements in LC-MS-based workflows in recent
years, which now offer enhanced quantitation accuracy and precision.
Here, our findings align with a recent study in which a mixed proteome
benchmark set based on HeLa digest was used to assess the impact of
DIA-NN processing parameters on the evaluation of QE-HF data and a
cross-platform comparison. In the mentioned study, a CV cut-off of 5%
was suggested as a threshold for deeming workflows or datasets
quantitatively reproducible”. Looking ahead, we anticipate that fur-
ther developments in chromatography and mass spectrometric
instrumentation will push the boundaries of both proteome depth and
data quality. While reference studies from the early 2000s demon-
strated state-of-the-art plasma proteomics with the identification of
around 100-200 proteins, it is now routinely possible to achieve a
coverage of >500-1000 proteins*>*>. Recent comparisons between
instruments, like the Orbitrap Exploris 480 and Astral, demonstrate
promising gains in sensitivity, highlighting the potential for even
greater precision in low-abundance protein quantification®, particu-
larly also with respect to plasma analysis*.

Our dataset not only identifies areas for further improvement but
also serves as a valuable resource for software development, offering a
comprehensive overview of current technological capabilities in LC-
MS workflows. Moreover, we could demonstrate how multicenter
studies can facilitate the reproducible transfer of methods across dif-
ferent sites. These advancements show how LC-MS technology has
evolved into a robust and reliable platform with great potential for
biomarker discovery and validation. It sets the stage for a continuously
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increasing role of quantitative proteomics in systems medicine and
clinical research.

Methods

Reagents and chemicals

Unless otherwise stated, all solvents (HPLC and Ultra LC-MS grade)
were purchased from Roth and all chemicals were obtained
from Sigma.

Preparation of the PYE benchmark sample set

Human plasma was commercially obtained from BioCat GmbH
(Heidelberg, Germany) and tested negative for HIV, ZIKA Virus, STS
(Syphilis) and Hepatitis B/C. A pure culture of the Saccharomyces
cerevisiae bayanus, strain Lalvin EC-1118 was obtained from Eaton
(www.eaton.com). E. coli was purchased from Thermo Fisher
Scientific.

E. coli cells were lysed using a urea-based lysis buffer (7 M urea,
2 M thiourea, 5 mM dithiothreitol (DTT), 2% (w/v) CHAPS). Lysis was
further promoted by sonication at 4 °C for 15 min using a Bioruptor
(Diagenode, Liége, Belgium). Yeast proteins were extracted using
alkaline pre-incubation with 0.1M NaOH (VWR, USA) followed by an
additional incubation step in lysis buffer containing 1% (w/v) SDS (Carl
Roth, Germany) at 95 °C.

After lysis, the concentrations of E. coli and yeast proteins were
determined using the Pierce 660 nm protein assay (Thermo Fisher
Scientific) according to the manufacturer s protocol. Neat plasma was
diluted 166-fold in urea-based buffer (7M urea, 2M thiourea, 5mM
dithiothreitol (DTT), 2% (w/v) CHAPS) prior to digestion.

Human plasma, yeast and E. coli proteins were digested on an
Biomek i7 robotic pipetting platform (Beckman Coulter Life Sci-
ences, Indianapolis, USA) equipped with a positive pressure adapter
(Amplius, Germany) using an adapted filter-aided sample prepara-
tion (FASP) protocol®. All digestion steps are detailed in Distler
et al.” and were implemented on the Biomek i7 liquid-handling robot.
Unless stated otherwise, each step of the semi-automated FASP
workflow was performed as described™ and carried out by the liquid-
handling robot applying a positive pressure of 500 mbar for 6-15 min
to force the liquid through the filter membranes. All volumes were
adapted to 100 pL/well, except for the trypsin digestion and the
elution steps after overnight digestion: Sample aliquots (corre-
sponding to 30 ug of protein per well) were manually transferred
onto AcroPrep Advance 96-well 350 uL 30 K Omega filter plates (Pall
Cooperation, USA) which had been additionally preconditioned with
0.1% (v/v) formic acid (FA) and urea-based lysis buffer (7 M urea, 2M
thiourea, 5mM dithiothreitol (DTT), 2% (w/v) CHAPS) in case of
plasma and E. coli. After sample transfer, membranes were washed
once with a urea-based wash buffer (8 M urea, 0.1 M Tris-HCI, pH 8.5).
Proteins were then reduced for 15min at 56 °C using 8 mM DTT
dissolved in the urea-based wash buffer followed by an additional
washing step. Afterwards, proteins were alkylated with 50 mM
iodoacetamide (IAA, in urea-based wash buffer) for 20 min at room
temperature. Excess IAA was removed by two washes using the urea-
based wash buffer and additionally quenched with 8 mM DDT for
15 min at 56 °C. Afterwards, the membrane washed twice with urea-
based wash buffer followed by three additional washing steps with
50 mM NH4HCO3;. Proteins were then digested overnight at 37°C
adding 40 uL of trypsin (Trypsin Gold, Promega, Madison, WI) dis-
solved in 50 mM NH4HCO3, 0.02% (w/v) DDM in water at an enzyme-
to-protein ratio of 1:50 (w/w) corresponding to 0.6 ug of trypsin per
well. After digestion, tryptic peptides were recovered from the
membrane adding 40uL 50 mM NH4HCO;. Flow-throughs were
acidified with FA to a final concentration of 0.1% (v/v) FA. Tryptic
peptides from multiple well plates were pooled in case of all three
species to obtain digest stock solutions for the generation of the PYE
sample set.

Digest quality of the different stocks was assessed by LC-MS
(checking for impurities, peptide abundances, total ion current as well
as number of peptide and protein IDs). Tryptic peptides were subse-
quently mixed in predefined ratios to generate hybrid proteome
samples. In total, the PYE benchmark set comprises six samples, PYEL A
and B, PYE3 A and B, PYE9 A and B (at 2pg/ul protein). For the
PYE1 sample set, tryptic peptides were combined in the following
ratios: sample A was composed of 90% w/w human, 2% w/w yeast, and
8% w/w E. coli proteins. Sample B was composed of 90% w/w human,
6% w/w yeast, and 4% w/w E. coli proteins (Fig. 1a). To generate the
PYE3 sample set, samples PYE1 A and B were further mixed with tryptic
human plasma peptides at a ratio of 1:3. PYE3 samples were then fur-
ther diluted threefold with human plasma peptides resulting in the
PYE9 sample set.

Afterwards, samples were shipped to all participating sites on dry
ice. Shipped sample amounts (i.e., volumes) were dependent on the
LC-MS setup used at the respective site providing higher sample
amounts to the sites that used a microflow LC-MS setup (see Table 1
and Supplementary Data 1).

Filter-aided sample preparation (FASP) of neat plasma sample
Blood samples were collected from five healthy volunteers from site L
(see also ethics statement). EDTA plasma was prepared by cen-
trifugation at 1780 x g for 10 min. The resulting plasma samples were
pooled and stored at —80°C until further processing. Proteolytic
digestion of the collected plasma pool was performed using an adap-
ted FASP protocol®. All digestion steps are detailed in Distler et al.”
and were performed manually in a 96-well format analogue to the
procedure described above (preparation of the PYE benchmark sam-
ple set). In brief, 20 pug of sample material were manually transferred
into each well of an AcroPrep Advance 96-well 350 pL 30 K Omega filter
plate (Pall Cooperation, USA), which had been preconditioned with
0.1% (v/v) FA.

All volumes, except the volume of the trypsin solution and the
steps on day two, corresponded to 100 uL/well. After sample transfer,
membranes were washed once with a urea-based wash buffer (8 M
urea, 0.1 M Tris-HCI, pH 8.5) followed by reduction of proteins using
8 mM DTT. After two washing steps with urea-based wash buffer,
proteins were alkylated with 50 mM IAA. Excess IAA was removed by
two washes and quenched with 8 mM DDT. Afterwards, the membrane
was washed twice with urea-based wash buffer followed by three
additional washing steps with 50 mM NH4HCOj;. Proteins were subse-
quently digested overnight at 37 °C with trypsin gold (0.4 ug/well,
Promega, USA) in 40 uL. 50 mM NH4HCO:s. After digestion 40 uL 50 mM
NH4HCO; were added to the samples to recover tryptic peptides.
Samples were acidified with 10 uL 1 % formic acid, which was added to
the wells of the 96-well collection plate containing eluted peptides
(Waters, USA). Peptides were pooled into one sample pool, which was
aliquoted, and lyophilized. Lyophilized sample was sent out to three
different partner sites (i.e., sites G, H, and L). At the different sites
samples were re-constituted in 0.1% FA (v/v) in water (final con-
centration of 1pug/uL) followed by a further dilution to 200 ng/uL in
0.1% FA (v/v) for LC-MS measurements.

Liquid-chromatography mass spectrometry (LC-MS)

All participating sites were asked to analyse the PYE benchmark sample
set using their preferred LC-MS setup for the characterization of
plasma samples according to the following measurement scheme: (1)
blank injection, (2) Hela QC (e.g., Pierce™ HeLa, Thermo Scientific), (3)
two blank injections, (4) PYE samples in the following order, PYE A9,
PYE B9, PYE A3, PYE B3, PYE Al, PYE B1), (5) blank injection. All samples
had to be analysed in multiple replicates (ranging from three to opti-
mally six replicate injections). No other restrictions were imposed on
the study centers regarding LC-MS setup, gradient length, on-column
load, etc. Detailed description of the LC-MS settings are provided in
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the supplementary section (see Extended Material and Methods sec-
tion of the Supplementary Info file).

Raw data processing and label-free quantification
All MS raw data sets of the participating partner sites were collected
and centrally analysed in the Tenzer laboratory.

The analysis of DDA data sets was performed using MaxQuant
(version 2.3.1.0)***. Data were searched against a customized data-
base, which was generated by compiling the SwissProt database
entries of the human, yeast and E. coli reference proteomes and a list of
common contaminants (UniProtKB release 2020 03, total of 31,039
entries). For each LC-MS setup and PYE dilution, i.e., PYE1, PYE3 and
PYE9, data processing was performed separately. Default MaxQuant
parameters were applied, including label-free quantification and
match between runs (MBR) enabled. The LFQ minimum ratio count
was set to two peptides. Trypsin was chosen as the enzyme and up to
two missed cleavages were allowed. Carbamidomethylation of
cysteine was set as a fixed modification, while methionine oxidation
was specified as variable modification. The FDR was set to 1% for both
PSMs and protein level (for parameter file, see Supplementary Data 8).

The DIA data were all processed using DIA-NN (version 1.8.1)*
applying the default parameters for library-free database search (see
Supplementary Data 8). For each LC-MS setup and PYE dilution, i.e.,
PYEL, PYE3 and PYE9, analysis was performed separately. Data were
queried against the same database as the DDA datasets (see previous
paragraph). For peptide identification and in-silico library generation,
trypsin was set as protease allowing one missed cleavage. Carbami-
domethylation was set as fixed modification and the maximum num-
ber of variable modifications was set to zero. The peptide length
ranged between 7 and 30 amino acids. The precursor m/z range was set
to 300-1800, and the product ion m/z range to 200-1800. As quan-
tification strategy we applied the robust LC (high precision) mode with
RT-dependent median-based cross-run normalization enabled. We
used the build-in algorithm of DIA-NN to automatically optimize MS2
and MS1 mass accuracies and scan window size. Peptide precursor
FDRs were controlled below 1%.

PYE data were additionally processed using FragPipe®* (version
23.0), separately for each LC-MS setup and measurement mode.
ZenoTOF raw files were converted to mzML beforehand using
MSConvert*® (version 3.0.20280) with vendor peak picking. The data
were searched against the same protein sequence database used for
MaxQuant and DIA-NN analyses including the same number of
reversed decoy sequences generated by FragPipe. For all DDA
experiments the LFQ-MBR workflow was employed, which uses
lonQuant™ for MSl-level quantification. As part of this workflow,
normalization of intensities across runs was disabled as we observed
some strange effects in the DDA set using cross-run normalisation.
For diaPASEF data the DIA_SpecLib_Quant_diaPASEF workflow was
used which applies diaTracer® for spectrum deconvolution prior to
searching. All other DIA experiments were processed using the
DIA SpecLib_Quant workflow, leveraging MSFragger-DIA* for direct
peptide identification. DIA quantification was performed using the
integrated DIA-NN (version 1.8.2 beta 8) module with cross-run nor-
malization disabled via the --no-norm command. To ensure a fair
comparison across workflows, key parameters were standardized:
the precursor mass tolerance was set from 20 to 20 ppm, and the
fragment mass tolerance was 20 ppm. A maximum of one missed
tryptic cleavage and one methionine oxidation was allowed. FDR
filtering and report generation were conducted using the --picked
and --prot 0.01 flags. Default settings were maintained for all other
parameters.

Downstream analysis of PYE data sets
The software reports of each data set (PYE dilution, site and instrument
setup) were processed separately. All downstream analyses were

conducted after removing reversed sequences and potential con-
taminants, allowing only proteins identified by 2 or more peptides. In
case of the DIA data (DIA-NN), Q.Value, PG.Q.Value, Lib.Q.Value, and
Lib.PG.Q.Value had to be additionally below or equal 0.01 for all plots
containing quantitative information. For the generation of plots that
contain statistics related to the calculated log,(FC) values between
samples A and B (e.g., violin plots, log,(FC) plots, etc.), proteins had to
be identified and quantified in at least three technical replicates in each
condition, i.e., sample A and B (for both, DDA and DIA datasets). Of
note, Peptides shared between species were excluded for log,(FC)
plots (and violin plots), but taken into account to calculate numbers of
identified proteins and peptides. A comprehensive overview of iden-
tified and quantified proteins and peptides across all sites for the DDA
(MaxQuant) and DIA (DIA-NN) analyses can be also assessed via
Zenodo at [https://doi.org/10.5281/zenodo.17131745]. Additionally, an
overview of the search results from all software tools uploaded to
jPOST/ProteomeXchange (JPST003358/PXD056598) is provided in
Supplementary Data 9.

Downstream analysis of the result files from MaxQuant, DIA-NN
and FragPipe was performed in R (version 4.3.2)°° using in-house
scripts to calculate and report a set of metrics including the visuali-
zation of log,(FC) changes, identification rates (number of identified
proteins and peptides for benchmark species), technical variance
(the median CV for protein abundances and retention times), global
accuracy (the median deviation of log, ratios to the expected value),
global precision of quantification (defined by the interquartile range
and the standard deviation of log, ratios). Identification complete-
ness (bar plots) as well as RT CV plots summarizing results across
multiple data sets were inspired by the mpwR (https://CRAN.R-
project.org/package=mpwR)* and the log,(FC) plots for individual
setups by the LFQBench package’. ggplot2 was used to design the
plots, except for the upset plots®®, which were generated with
ComplexUpset™.

For the analyses displayed in Fig. 3 processing results were inte-
grated across the different LC-MS setups merging the processing
results (from the analyses described above for each dilution level and
species). Intensities for each protein were aggregated by calculating
the mean and normalized against the maximum reported protein
intensity value within each LC-MS setup. These normalized values were
then combined across labs for each PYE dilution to obtain a single
intensity value per protein, which was then ranked (Fig. 3a, b). For the
scatter plot analysis, protein intensities were averaged and normalized
separately for each LC-MS setup and PYE dilution level, to assess and
plot the correlation between protein intensities across the different
PYE dilution levels, i.e., PYE sample sets (Fig. 3c, d). To this end, we
divided the LFQ values for each protein by the LFQ value of the most
abundant protein (highest LFQ value) for each site and setup. Ratio
were then multiplied by 100 to convert into percent, with 100% cor-
responding to the highest LFQ value. Figure subpanels have been
integrated using Adobe lllustrator (version 29.7.1). Bar plots in
Figs. 1 and 7 have been generated using GraphPad Prism (ver-
sion 10.5.0).

Ethics statement

Blood samples were taken at the University Medical Center of the
Johannes Gutenberg University Mainz from five healthy donors after
obtaining informed consent. All experiments containing human blood
plasma from these donors were approved by the ethics committee of
the Landesirztekammer Rheinland-Pfalz, Mainz No. 837.439.12 (8540-
F) and thus performed in compliance with all relevant laws and
guidelines.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability

The raw mass spectrometry data generated in this study along with the
database search results have been deposited to the ProteomeXchange
Consortium (http://proteomecentral.proteomexchange.org) via the
jPOST partner repository®® with the dataset identifiers PXD056598
(ProteomeXchange) [https://proteomecentral.proteomexchange.org/
cgi/GetDataset?ID=PXD056598] and JPST003358 (jPOST, https://
repository.jpostdb.org/entry/JPST003358) (PYE analyses from all
partner sites as well as plasma proteome experiments). An overview of
deposited data files is also provided in Supplementary Data 9. Source
data are provided with this paper via Zenodo at [https://doi.org/10.
5281/zenodo.17131745]. Additional data files providing a full summary
of identified proteins and peptides across all sites for the DDA and DIA
analyses can be also assessed via Zenodo at [https://doi.org/10.5281/
zenodo.17131745]. Source data are provided with this paper.

Code availability

The R scripts for reproducing the figures are available via GitHub at
[https://github.com/HanY001402/LFQ-Bench-Scripts-for-PYE-
Multicenter-Study and Zenodo at [https://doi.org/10.5281/zenodo.
170183391.
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