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Abstract

Neurodegenerative disorders (NDDs), characterized by a progressive loss of neurons and cognitive function, are a severe burden to
human health and mental fitness worldwide. A hallmark of NDDs such as Alzheimer’s disease, Huntington’s disease, Parkinson’s
disease (PD), amyotrophic lateral sclerosis (ALS) and prion diseases is disturbed cellular proteostasis, resulting in pathogenic deposition
of aggregated protein species. Autophagy is a major cellular process maintaining proteostasis and integral to innate immune defenses
that mediates lysosomal protein turnover. Defects in autophagy are thus frequently associated with NDDs. In this review, we discuss
the interplay between NDDs associated proteins and autophagy and provide an overview over recent discoveries in inborn errors in
canonical autophagy proteins that are associated with NDDs. While mutations in autophagy receptors seems to be associated mainly
with the development of ALS, errors in mitophagy are mainly found to promote PD. Finally, we argue whether autophagy may impact
progress and onset of the disease, as well as the potential of targeting autophagy as a therapeutic approach. Concludingly, understanding
disorders due to inborn errors in autophagy—“autophagopathies”—will help to unravel underlying NDD pathomechanisms and provide

unique insights into the neuroprotective role of autophagy, thus potentially paving the way for novel therapeutic interventions.
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Introduction
Neurodegenerative diseases as proteinopathies

Neurodegenerative diseases (NDDs) are a heterogenous group
of neurological conditions characterized by a progressive loss
of neurons [1-3]. This erosion of neuronal circuits eventually
leads to a collapse of neurocognitive features including impaired
motor function, cognitive decline, memory loss and behavioral
alterations. Currently, more than 55 million people are affected by
NDDs, with ageing as the greatest risk factor [4]. Considering the
overall ageing population, the impact of NDDs on human health
worldwide is expected to increase. Besides age, genetic factors
are crucial contributors to the development and progression of
NDDs. A hallmark of several prominent NDDs is the loss of
proteostasis and pathological aggregation of cellular proteins [1].
These toxic aggregates often form insoluble amyloid fibers and
are thought to be a key pathological mechanism. According to
the aggregating protein, NDDs can also be classified into amyloi-
doses, tauopathies, a-synucleinopathies, TDP-43-associated pro-
teinopathies and prion diseases (Fig. 1A).

Aggregated small amyloid B (AB) peptides are the major
component of amyloid plaques in Alzheimer’s disease (AD) [5].
They are derived from the amyloid-8 precursor protein (APP) by
cleavage during the amyloidogenic pathway by B-secretases and

y-secretases. Of note, while AB oligomers and deposits have been
considered as the molecular driver of Alzheimer’s pathogenesis
and progression, therapeutic targeting of Ag has repeatedly failed
[6]. Filamentous lesions and deposits of fibrils of the microtubule-
associated protein tau are defining features of AD and related
tauopathies such as frontotemporal dementia (FTD) [7]. Aberrant
hyperphosphorylation of tau in neurons leads to its aggregation
into helical filaments. Notably, tauopathies are considered to be
responsible for the majority of dementias [8]. Alpha-synuclein
(x-syn) is a small 14 kDa cellular protein mainly expressed in the
central and peripheral nervous system. While mainly «-helical in
its non-pathogenic form, it transitions into a pathological g-sheet
confirmation, that eventually aggregates to form amyloid-like
fibrils accumulating in neurons in Lewy bodies in Parkinson's
disease (PD) or dementia with Lewy bodies (LBD) [9]. In multiple
system atrophy (MSA) «a-syn aggregates form mainly in glia cells
[9]. @-syn aggregation/co-aggregation is observed in ~30%-50% of
AD cases [10-12]. Mutated Huntingtin (Htt) with a polymorphic
locus containing more than 36 CAG codons (coding glutamine,
Q) is thought to be the main molecular cause of Huntington's
disease (HD). The number of CAG repeats directly correlated
with the onset and severity of the disease. Polyglutamine (polyQ)
expanded Htt forms amyloid-like protein aggregates [13] which
may be part of the HD pathogenesis. TAR DNA-binding protein 43
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Figure 1. The interplay between autophagy and NDDs. (A) Ag and hyperphosphorylated tau protein, g-sheet a-synuclein, Polyglutamine (polyQ)
huntingtin (Htt), neurofibrillary tangles (NFTs), TDP-43 and misfolded prion protein (PrPs¢) are aggregated proteins found in proteinopathies. Alzheimer’s
disease (AD), column 1 (red); Parkinson'’s disease (PD), column 2 (blue); Huntington’s disease (HD), colum 3 (orange); amyotrophic lateral sclerosis (ALS),
column 4 (green); prion disease, column 5 (purple). (B) Proteins (aggregates) associated with NDDs interact with the autophagic pathway at multiple
levels. Autophagy initiation is inhibited by Htt fibrils and «-synuclein fibrils. After LC3B-I to LC3B-II conversion, cargo like misfolded/aggregated NDD
associated proteins are recruited to the budding phagophore by specific autophagy receptors. In turn autophagy receptor function is disturbed by Htt
fibrils and NFTs. To degrade the cargo, the closed autophagosome fuses with a lysosome to form an autophagolysosome. Insoluble TDP-43 interferes
with lysosome function, whereas NFTs and a-synuclein fibrils perturb autophagosome to autophagolysosome transition.

(TDP-43) is a highly conserved nucleic acid binding protein and
its aggregation is a common feature of several NDDs including
amyotrophic lateral sclerosis (ALS), FTD and AD [14]. TDP-
43 pathology is most prominent in ALS, with more than 90%
of the cases exhibiting cytoplasmic aggregates that spread in
characteristic stages [15]. Misfolding of cellular Prion protein
(PrP°) into B-sheet rich, aggregation-prone infectious PrPs¢ is
the underlying cause of fatal Prion diseases or “transmissible
spongiform encephalopathies” among them Creutzfeld-Jacob
disease [16]. As opposed to other proteinopathies, prion protein
aggregates have been shown to transmit the disease [17].

Taken together, it is conceivable that disturbance of proteosta-
sis governs the onset and/or promotes progression of proteino-
pathic NDDs. The core of proteostasis maintenance in cells
are chaperones that reduce misfolding, catabolic systems that
degrade misfolded proteins such as the ubiquitin-proteasome
system (UPS), and autophagy [18].

Autophagy maintains proteostasis

Macroautophagy (hereafter referred to as autophagy) is an
evolutionary ancient catabolic pathway that is active in virtually
every cell [19]. It is essential to maintain cellular proteostasis
and an important part of innate immunity, providing defenses
against pathogens. In a nutshell, autophagy facilitates (targeted)

lysosome-associated degradation of obsolete/damaged organelles
(e.g. degradation of mitochondria in mitophagy) and cellular or
pathogen-associated proteins [20, 21]. Initiation is guided by the
activity of kinases. AMP-activated protein kinase (AMPK1) promotes,
whereas mammalian target of rapamycin (mTOR) and Casein
kinase 2 (CSNK2) oppose autophagy activation [21-23]. Initiation
converges in the activation of the Unc-51-like autophagy-
activating kinases 1 (ULK1) complex that promotes the formation
of a double-membranous structure called the phagophore [24].
The membranes are recruited by autophagy-related protein
9 (ATG9) in a Vacuolar protein sorting ortholog 35 (Vps35)-
dependent manner [25, 26]. The budding autophagic vesicle
(=autophagosome) is decorated with lipidated-ATG8 like proteins
such as LC3B-II, promoting elongation of the autophagosome
and the engulfment of cytoplasmic cargo. In selective autophagy,
highly specific autophagy receptors recruit cargo earmarked
by ubiquitin, among them Sequestosome-1 (SQSTM1/p62),
Calcium-binding and coiled-coil domain-containing protein 2
(CALCOCO2/NDP52) or optineurin (OPTN) [27]. A master regulator
of autophagy receptor phosphorylation and activation is Tank-
binding kinase 1 (TBK1) [28, 29]. During mitophagy, obsolete
mitochondria are recognized by PTEN-induced kinase 1 (PINK1),
which causes activation of the E3 ligase parkin, that decorates the
outer mitochondrial membrane with ubiquitin, which is in turn
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recognized by OPTN [30]. Finally, the autophagosome matures and
fuses with a lysosome to form the autophagolysosome followed
by degradation of the inner membrane and the cargo by acidic
hydrolases [31].

Main text

The interplay between autophagy and
NDD-associated proteins

The majority of NDD-associated proteins were shown to be tar-
geted by autophagy [32] (Fig. 1B). AB, insoluble tau and mouse
Htt were shown to be cleared by activation of autophagy depen-
dent on p62 [33-36]. Conversely, autophagy-deficient mice show
increased extracellular Ag deposition and intracellular Ag accu-
mulation [37-39], while lack of autophagy in microglia aggra-
vates tau pathology [40]. Pharmacological activation of autophagy
mitigates cognitive defects of AD model mice [38]. Curiously, it
was also reported that autophagy may promote extracellular
AB secretion and deposition [41] and the autophagy adaptor
TRIAD3A was suggested to promote tau fibrillation [42], sug-
gesting a more complex role of autophagy in AD. Inhibition of
autophagy attenuated the clearance of Htt aggregates both in cell
culture and rats 35, 43-45]. a-syn is targeted for degradation by
both autophagy and the proteasome [46, 47]. TDP-43 pathology
was reduced in an ALS mouse model by autophagy induction [48,
49] and TDP-43 aggregates were found in autophagosomes [50]. Of
note, TDP-43 secretion may be promoted by autophagy-associated
processes [51]. The impact of autophagy on prion diseases is
less well explored, however, older studies suggest that protease
resistant prion may be targeted by autophagy [52] and induction
of autophagy counteracts prion mediated neurotoxicity [53, 54].

In turn, NDD-assoclated protein aggregates impact autophagy.
AB fibrils reduce autophagic flux in AD models and AD patients
[55-57] which may additionally fuel deposition of fibrils [58].
Similarly, tau accumulation inhibits autophagy via impairing
ESCRT-III complex formation [S9] and disturbance of the
autophagosomal-lysosomal axis is associated with tauopathies
[60]. Prolonged polyQ tracts in Htt outcompete binding of ataxin-
3 to beclin-1, leading to beclin-1 degradation and inhibition
of autophagy initiation [61]. Of note, tau as well as Htt fibrils
escape clearance by autophagy by stealthing in p62 coats [62,
63]. a-syn impacts autophagy by impairing SNAP29-mediated
autophagosome-lysosome fusion [64]. Pathogenic, mutated «-
syn (A53T) is able to bind to tuberous sclerosis protein (TSC) 2,
which destabilizes the TSC1-TSC2 complex, eventually leading
to aberrant mTOR activity [65]. Of note, soluble a-syn (SNCAx3)
impairs autophagy/mitophagy [66] and may disturb autophagy by
accumulation at the ER, eventually leading to the aggregation of
immature B-glucocerebrosidase (GCase) [67]. TDP-43 was shown
to impair autophagosome turnover by increasing TFEB activity
[68] and interfering with lysosomal function thus presumably
preventing its own degradation [69]. The prion protein was also
suggested to play a role in autophagy [70], and human prion-
induced autophagy flux was reported to contribute to primary
neuron cell damage [71].

Improving our understanding of the intricate relationship
between autophagy and NDDs may open up new avenues for
both molecular insights and therapeutic interventions.

Patient variants in autophagy genes linked to
NDDs

In the recent years, monogenic variants of core autophagy
proteins have been causally linked to the development of
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neurodegenerative pathology providing genetic evidence for the
importance of autophagy and may help to unravel the complex
pathomechanisms [72]. Here we focused on recently discovered
mutations in core autophagy proteins associated with five major
NDDs: AD, PD, HD, ALS and Prion diseases (Fig. 2, overview in [73]).

Alzheimer’s disease (AD)is a form of dementia mainly charac-
terized by symptoms like memory loss and cognitive dysfunction
[74] linked to hyperphosphorylated tau proteins, that aggregates
to neurofibrillary tangles [7], and AB aggregates derived from APP
cleavage [5]. Although more than 90% of AD cases are sporadic,
AD was associated with mutations in presenilin-1 and -2 (PSEN1;
PSEN?) and Sortilin Related Receptor 1 (SORL1) [75, 76]. Recently,
AD-associated variant p.N299S in acetyl-Coenzyme A acyltrans-
ferase 1 (ACAA1) was described to eventually lead to impaired
autophagosome-lysosome fusion and function [77]. In all cases
autophagy was disturbed, however, the mutations did not affect
core autophagy genes.

Parkinson’s disease (PD) is associated with accumulation and
aggregation of a-syn within dopaminergic neurons. Although
mainly sporadic (85%-90%) patient-associated variants are
frequently found in genes involved in mitophagy (Fig. 2), usually
in the E3 ligases parkin and PINK1. Of note, PINK1 mutations
are especially common in early onset PD [78-80]. However, it
should be noted that many mutations in PARKIN, may lead
to a disturbance of «-syn proteasomal degradation and may
not affect mitophagy. Variants of parkin include more than
10 likely pathogenic missense mutations (Table 1 and [120]),
often resulting in dysfunctional gene expression. More recently,
analyses of cells from a PD patient with mutated PARKIN (B125:
homozygous c¢.1072Tdel) revealed a destabilization of active
Rab7, leading to decreased mitochondria-lysosome contact, and
thus amino acid accumulation in lysosomes [118]. Systematic
analyses of PINK1 mutations associated with PD showed that
more than 16 missense variants could be considered pathogenic
[129]. Most recently, further putatively pathogenic variants were
discovered, including p.F385S [130]. Mutated VPS35 p.D620N
associated with PD patients, was shown to impair mitophagy
and autophagy [123]. In addition, VPS35 p.D620N disturbed
Rab9 dependent non-canonical autophagy [131]. PD associated
mutations in the lysosomal GBA (p.N370S, p.L444P) lead to
lysosomal dysfunction, inhibiting chaperone mediated autophagy,
however simultaneously maintaining normal autophagy levels
via increase in ULK1 phosphorylation, highlighting a possible
compensatory mechanism [124].

Huntington'’s disease (HD) is defined by the aberrant presence
of CAG repeat expansions in the Htt gene, resulting in the
expression of Htt with expanded polyQ tracts at the C-terminus.
These variants are prone to aggregation, formation of amyloid-
like fibrils as well as neurofibrillary tangles [13]. Of note, the risk
variant p.V471A in the core autophagy gene ATG7 is associated
with early onset of HD, suggesting that functional autophagy may
clear pathological aggregation [126, 127]. Recently it was shown
that the expression of the miRNA miR-29b-3p targeting STAT3
and ultimately reducing autophagy, increases with age potentially
increasing HD symptom severity [132].

Amyotrophic lateral sclerosis (ALS) is characterized by the
progressive loss of upper and lower motoneurons, leading
to death within 3-5 years after symptoms onset [15]. Even
though the associated risk genes are functionally heterogeneous,
intracellular TDP-43 aggregates characterize up to 97% of the
cases [133]. Of note, as a large number of mutations in core
autophagy genes were identified as risks in the past years (Table 1,
Fig. 2), we discuss here the most recent findings. For example,
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Table 1. Variants of core autophagy genes, mechanism and associated diseases.

Disease Genes Mutation

Identified in

Mechanism

ALS SQSTM1 p.L341V

(81]

Reduced binding affinity to ubiquitin [82]
Reduction in binding affinity to hATG8 [83]

p.P392L

Reduced binding affinity to ubiquitin [82]

p.G425R

Loss of binding to ubiquitin [82]

p.A16V
p.D8OE
p.E8IK
p.VIOM
p.I99L
p.R1IO7W
p.R212C
p.G219V
p.S226P
p.P232T
p.N239K
p.D258N
p.E280x
p.G297S
p.R312H
p.A33V
p.V1531
p.P228L
p.V234V
p.H261H
p.S318P

NA

p.R110C

Reduced phosphorylation of Ser-403 and Ser-349 [84] necessary for SQSTM1/KEAP1 interaction, also
reducing NRF2 activity (Oxidative Stress response)

p.D129N

Reduce affinity towards N-degron [85]

p.K238del

(86]

Loss of function, reduced mitochondrial respiration, increased cytosolic ROS production, reduced
complex 1 activity of the electron transport chain and lowered mitochondrial membrane potential [87]

p.R321C

Increased levels of p62 and LC3B suggesting autophagy blockage [88]

p.G411S

Loss of mono- and polyubiquitin-binding [89]

p.AS3T
p.M87vV
p.E155K
p.K238E
p.E274D
p.P296P
p.S318S
p.V346V
p.A390x
Dp.P438L
p.P439L
p.V346V
p.S370P

[90]

NA

p.K102E

Impaired formation of disulphide-linked conjugates upon oxidative stress and thus induction of
autophagy [91]

p.P348L

Reduced Keap1 binding [92]

OPTN p.E478G

(93]

Inhibits autophagosome maturation [94]
Impaired mitophagy [95]

p.G23x
p.Q165%
D.S262x
p.L568L

NA

D.Q398

Loss of ubiquitin binding [96]

p.L430Rfs*16
p.K440Nfs*8
p.D220Mfs*12

NA

p.148_184del-, Ex5del

NA

p.H3Y
p.P16A
p.K59N
p.A93P
p.R96L

NA

(continued)
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Disease Gene

Mutations Identified in Mechanism

TBK1

p.D127R
p.A136V
p.V161M
p.R271C
p.T282P

p.V295F

p.Q314L
p.E322K

p.K395R
p.M447R
p.1451T

p.M468R
Dp.A481V
p.K489E

p.L494W
p.L500P

p.E516Q
p.R545Q
pK557T
p.Q564H

Dp.Q454E

Dysregulation of NF-kB and mitophagy [97]

p.E696K [98]

Impairing lysosomal degradation, Rab7 phosphorylation, OPTN binding, and mitophagy [30, 99-102]

P.R573G

Reduction in kinase activity [103]

p.143v NA
p.L62P
p.L94Sx
p.D118N
p.G121Dx
Pp.R143Cx
p.R229s
p.G244V
p.1246T
pR271Lx
p.K291E
p.G294D
p.L3061x
p.H322Y
p.I334T
DP.R384Wx
p.I397T
p.K401E
p.1418V
p.J475Tx
Dp.E476Kx
p.I515T
p.AS35T
p.K570R

p.T320Qfs*40
p.I1450Kfs#15
D.V479Gfsx4
D.Y185x
p.T77Wfss4
D.A417%
690-713del
Dp.R440x

Loss of function [104]

p.R47H

loss of kinase activity and loss of IRF3 activation [105]

P.R357Q

abolish OPTN binding and phosphorylation, failure to oligomerize and reduced steady-state-level [105]

DP.MS59R
p.G217R

loss of kinase activity and dimerization, loss of OPTN binding [99, 104, 105]

p.I305T NA
p.AS71V
p.M598V

(continued)
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Table 1. Continued.

Disease

Genes

Mutations

Identified in

Mechanism

PD

CCNF

UBQLN2

C90RF72

PEN1

PINK1

PRKN

p.Y105C
Pp.R308Q

[106]

Impaired interaction with OPTN and reduced p62 phosphorylation [105]

p.M623fs
p.Q629fs
p.T31A
p.R358H

NA

p.E643del

NA

p.Q2del

p-R117del
p.R357del
p.R440del
p.R444del
p.S499del

[107]

NA

p.L10S
p.S151F
pI257T
p.L277V
p.T3311
p.T343S
Dp.R440Q
p.C471Y
p.I522M
p.R573H
p.Q580H
p.I710N

NA

p.N22H
p.S151C

Reduced p62 S403 phosphorylation [105]

p.R25H
p.R47H

p.R134H
p.R228H
Dp.V132E
p.N129D

Reduced kinase activity/loss of function [105]

p.R228H

Reduced autophosphorylation/partial loss of function [108]

p.Q565P

Reduced phosphorylation of p62 [105]

Dp.Y394D

Early onset of the disease/mechanism not known yet [107]

D.S621G

[109]

Inhibits p62 foci formation [109]

p.P497H
p.P5095

[110]

Reduced mitophagy [110]

G4C2 repeats

Impaired autophagic flux, autophagosome biogenesis, and fusion with lysosomes.

Perturbed lysosome metabolism (axonal transport, maturation (enlarged and reduced numbers))

Increased phosphorylated TBK1 (S172) levels [111-113]

p.C71G
p.M114T

[114]

Impaired endolysosomale processing [114]

pK219A
p.G309D
p.L347P

p.D362A
p.D384A
p.G386A
p.G409V
p.E417G

[115]

Reduced kinase activity [115]

p.Q456%

[116]

No kinase activity [116]

p.V170G

(117]

Reduced activity/partial loss of function [117]

p.C431S

[118]

Decrease in mitochondria lysosome contact [118]

p.Q34Rfs%5
Dp.Q34Rfs%10
p.V3Efs%3
Dp.A138Gfsx7
p.N52Mfs+29
P.G34Rfsx5
p.P113Tfsx51
p.D18Vfsx26
p.R1565fs%29

mdsgene.org

NA

(continued)
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Table 1. Continued.

Autophagy errors in neurodegenerative diseases | R29

Disease Genes Mutations Identified in Mechanism
D.W445x NA
p.C446F
p.Q311x%
p.R275W Reduced PRKN translocation/loss of function [119]
p.C212Y Reduced protein stability/loss of function [120]
p.C253Y
p.T240M Residue necessary for E2-binding/likely loss of function [121]
p.T240R
p.G430D Residue necessary for RING2 domain function/likely loss of function [121]
p.R42P Reduced protein stability/likely loss of function [121]
p.V56E
p.T415N Loss of function [122]
p.W453x% Loss of substrate ubiquitination [121]

VPS35 p.D620N [123] Impaired auto- and mitophagy [123]
GBA p.N370S [124] Lysosomal dysfunction [124]

p.L444P
p.E326K [125] Reduced TFEB activity, increase in p-RPS6 levels and decrease in DEPTOR [125]

HD ATG7 p.V471A [126] Loss of function [126-128]

AD ACAA1 p.N299S [77] Impaired lysosome function and lysosome-autophagosome fusion [77]

several mutations (p.L341V, p.P392L, p.G425R) in one of the
major cargo-recruitment receptors of autophagy, SQSTM1/p62
were shown to result in reduced binding affinity to ubiquitin,
eventually leading to reduced lysophagy [82]. p.L341V in p62
lowers the binding affinity to certain hATG8 proteins [83].
(Table 1). A patient-associated variant of the autophagy receptor
OPTN (p.E478G) has been shown to interfere with the maturation
of autophagosomes and MYO6 recruitment, inhibiting autophagic
flux [94]. This variant negatively influences OPTN and UBQLN2
recycling at endosomes [134]. Mutations in TBK1, a central
regulatory kinase of autophagy, have been frequently linked to
impaired autophagy and increased neuroinflammation in ALS
[135]. So far more than 90 mutations in TBK1 were associated with
ALS [99]. Most of the TBK1 related mutations are deleterious and
most likely lead to haploinsufficiency [99, 104] (Table 1). Lower
TBK1 levels prevent efficient maturation of autophagosomes due
to reduced phosphorylation of autophagy receptors [136]. Many
missense mutations in TBK1 show a loss of function phenotype,
however the exact mechanism for all mutations is currently not
known [104] (Table 1, and [104, 137]). More recently it was reported
that TBK1 p.E696K lowers its expression levels, impairs lysosomal
degradation, and elevates Rab7 phosphorylation levels [100].
Of note, hyperactive Rab7 leads in turn to mTORC1 activation,
further inhibiting autophagy [101]. In addition, TBK1 p.E696K
has been shown to reduce binding affinity towards OPTN [99].
Another group reported that the TBK1 p.R573G mutation leads to
a reduced kinase activity, yet autophagic flux levels were not
altered [103]. In addition to core autophagy proteins, genetic
mutations in other autophagy regulating factors were recently
identified as risks genes in ALS. For example, CCNF (p.S621G)
reduces p62 foci formation [109] and mutated UBQLN2 (p.P497H,
p.P509S) decreases mitophagy [110]. G4C2 repeats in C9ORF72
were suggested to reduce biogenesis of autophagosomes and
autophagosome-lysosome fusion [111-113]. Longer repeats cause
sequestration of TBK1 into inclusion bodies, thus reducing TBK1
activity [138]. Mutant profilin 1 (PFN1) (p.C71G, p.M114T)
negatively impacts endo-lysosomal processing [114].

Transmissible spongiform encephalopathies (TSE), or prion
diseases, are characterized by aggregates of misfolded Prion
protein, PrPs¢ [16]. TSEs are unique among NDDs as epidemi-
ological evidence supports that they are transmitted between
people, similar to infectious agents [17]. While the last decades
have elucidated numerous pathogenic variants of the PRNP gene,
up to date, there are no mutations in autophagy related genes
described which are associated with prion diseases.

Concluding remarks

Molecular analysis of human genetic variants gave unique
insights into the pathophysiological mechanisms of autophagy
in NDDs. Patient-associated mutations have established a clear
genetic link between autophagy and selected NDDs. For example,
there is a clear association between PD and perturbed mitophagy.
The most studied mitophagy pathway is dependent on two
proteins central for familiar PD, PINK1 and parkin [80, 120].
Mutations in these two proteins, which often lead to dysfunctional
mitophagy are considered to be the most common genetic link
to PD. Curiously, ALS seems to be predominantly associated with
variants of autophagy receptors such as p62 or OPTN, or variants
of autophagy-receptor activating kinases such as TBK1 [29, 134,
137]. That said, different stages/pathways of autophagy are clearly
associated to specific NDDs. While the molecular details of
mitophagy in PD has been extensively analyzed [9, 30, 66, 79, 118],
the notable concentration of ALS-associated autophagy receptor
mutations needs to be further explored. Other NDDs such as AD,
HD or prion diseases were shown to impact and be impacted by
autophagy, but prominent mutations in core autophagy proteins
were not (yet) associated. Finally, a large number of patients
develop NDDs sporadically, especially AD or PD, and no clear
genetic condition could be associated. Of note, the age of onset of
sporadic NDDs is usually late in life. It is tempting to speculate
that waning efficiency of autophagy due to ageing may increase
the chances of sporadic formation of toxic protein aggregates.
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Figure 2. Mutations in autophagy initiation associated genes in NDDs. TBK1 activates autophagy receptors such as OPTN and p62 by phosphorylation,
which in turn recruit cargo to the budding phagophore. Conversion of LC3B-I to membrane-associated LC3B-II is facilitated by ATG7 and required
for autophagosome elongation and closure. Phagophore formation is promoted by membrane recruitment via VPS35. During mitophagy, damaged
or obsolete mitochondria are recognized by PINK1, which in turn activates the E3 ubiquitin ligase parkin. Parkin catalyzes the ubiquitination of the
mitochondrial outer membrane. The earmarked mitochondria are then recruited to autophagosomes by OPTN. NDD associated mutations that impair

function in autophagy are highlighted in respective color.

However, the role of age-impaired autophagy in the development
and progression of NDDs needs to be analyzed.

NDD-associated defects in genes related to autophagy may
not automatically show involvement of canonical autophagy.
For example, non-canonical autophagy such as LC3-associated
phagocytosis [139] was shown to facilitate AD in mouse models
[39]. In addition, many autophagy proteins play secondary roles
in secretory processes [140], which can impact cytokine secretion
during neuroinflammation [141] or direct secretion of fibrils [41,
51]. While canonical autophagy is considered to solely lead to the
degradation of intracellular proteins/aggregates, autophagy-like
processes may also target extracellular NDD-associated proteins
and aggregates. It is thus crucial for future studies to delineate
the exact role and impact of NDD associated gene variants in
autophagy, autophagy-like processes or even non-autophagy-
related processes.

Emerging evidence suggests that autophagy is a cellular
defense mechanism against NDDs, preventing detrimental
oligomer formation, or even clearing aggregates [142, 143].
Convincing preclinical data highlighting the therapeutic potential
of autophagy modulation is currently accumulating [142, 144].
For example, activation of autophagy by the mTOR inhibitor
Temsirolimus decreased Htt aggregates in mouse studies [145].
Similarly, targeting mTOR was shown to reduce progression of AD
in models [146-148]. Along these lines, modulation of the activity
of kinases involved in the activation of autophagy such as AMPK
were also shown to decrease aggregate formation in cellular and
mouse models of AD, PD, and HD. In HD, therapeutic strategies
based on targeting mitophagy, such as ROCK inhibitors [149, 150],
were tested in proof-of-principle experiments. Unfortunately,
despite ongoing clinical trials, there are currently no approved
therapeutic interventions based on autophagy modulation. The
reasons are likely multifactorial, and include strong side-effects,
little autophagy-specificity and difficult central nervous system
delivery of currently available compounds.

Despite rapid progress in the identification of NDD-associated
mutations in recent years, the underlying molecular mecha-
nism(s) and how do they contribute to the onset and progression
of the disease often remain understudied. Importantly, it also
needs to be addressed, why do certain mutations lead to a specific
type of NDD. In addition, insights from understanding the molec-
ular basis of mendelian NDD-associated autophagopathies will
improve our understanding of the protective role of autophagy,
and help unravel the molecular biology of NDD onset and
progression. Most importantly, inspired by our understanding of
the molecular details the way for direly needed novel therapeutic
interventions in NDDs is paved.
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