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ABSTRACT

Recently, ultra-high-field MRI (UHF-MRI) has become more available and one of the best tools to study the brain for 
neuroscientists. One common step in quantitative neuroimaging is to segment the brain into several regions, which 
has been done using software packages such as FreeSurfer, FastSurferVINN, or SynthSeg. However, the differences 
between UHF-MRI and 1.5T or 3T images are such that the automatic segmentation techniques optimized at these 
field strengths usually produce unsatisfactory segmentation results for UHF images. Thus, it has been particularly 
challenging to perform region-based quantitative analyses as typically done with 1.5–3T data, considerably limiting 
the potential of UHF-MRI until now. Ultimately, this underscores the crucial need for developing new automatic seg-
mentation techniques designed to handle UHF images. Hence, we propose a novel Deep Learning (DL)-based seg-
mentation technique called GOUHFI: Generalized and Optimized segmentation tool for ultra-high-field images, 
designed to segment UHF images of various contrasts and resolutions. For training, we used a total of 206 label maps 
from four datasets acquired at 3T, 7T, and 9.4T. In contrast to most DL strategies, we used a previously proposed 
domain randomization approach, where synthetic images generated from the 206 label maps were used for training 
a 3D U-Net. This approach enables the DL model to become contrast agnostic. GOUHFI was tested on seven differ-
ent datasets and compared with existing techniques such as FastSurferVINN, SynthSeg, and CEREBRUM-7T. 
GOUHFI was able to segment the six contrasts and seven resolutions tested at 3T, 7T, and 9.4T. Average Dice-
Sørensen Similarity Coefficient (DSC) scores of 0.90, 0.90, and 0.93 were computed against the ground truth segmen-
tations at 3T, 7T, and 9.4T, respectively. These results demonstrated GOUHFI’s superior performance to competing 
approaches at each resolution and contrast level tested. Moreover, GOUHFI demonstrated impressive resistance to 
the typical inhomogeneities observed at UHF-MRI, making it a new powerful segmentation tool allowing the usual 
quantitative analysis pipelines performed at lower fields to be applied also at UHF. Ultimately, GOUHFI is a promising 
new segmentation tool, being the first of its kind proposing a contrast- and resolution-agnostic alternative for UHF-
MRI without requiring fine tuning or retraining, making it the forthcoming alternative for neuroscientists working with 
UHF-MRI or even lower field strengths.
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1.  INTRODUCTION

One of the most important steps in quantitative neuroim-
aging pipelines is the segmentation of the brain into its 
different regions. Segmentation can be used to identify 
specific brain regions for cognitive disease diagnosis, to 
perform quantitative analyses like relaxometry or volum-
etry, and to help with surgical planning or image-guided 
interventions (Despotović et  al., 2015; González-Villà 
et al., 2016; Klinger et al., 2024; Singh & Singh, 2021). 
Due to the considerable amount of time and expertise 
required to produce manual segmentations for many 
regions and subjects, automatic methods have been 
developed. Historically, atlas- and Bayesian-based tech-
niques have been proposed, such as MABMIS and Free-
Surfer or FSL-FIRST, respectively (Fischl et al., 2002; Jia 
et al., 2012; Patenaude et al., 2011). All propose to auto-
matically segment the whole brain into several cortical 
and subcortical labels. However, with the developments 
in graphical processing units (GPU) in the last decade, 
Deep Learning (DL) has drastically changed the land-
scape of automatic brain segmentation. Whereas regular 
machine learning (ML) approaches have shown limited 
ability to generalize and adapt to complex imaging 
modalities, convolutional neural networks (CNN) used for 
DL models have become increasingly successful in han-
dling these challenges (Singh & Singh, 2021). More pre-
cisely, the U-Net architecture proposed by Ronneberger 
et al. (2015) has shown remarkable performance for brain 
segmentation tasks. Due to its symmetrical encoder–
decoder structure with skip connections, creating a 
U-shaped architecture, the U-Net is able to efficiently 
extract features at different scales in the images. Recently, 
several techniques using the U-Net architecture have 
been proposed such as AssemblyNet (Coupé et  al., 
2020), QuickNat (A. G. Roy et al., 2019), SLANT27 (Huo 
et al., 2019), FastSurferCNN (Henschel et al., 2020), and 
FastSurferVINN (Henschel et al., 2022), which allow the 
segmentation of the brain into more than 25 labels.

Most of the DL-based brain segmentation techniques, 
including all of the aforementioned ones, rely on the typ-
ical paradigm of using a T1w input image with its corre-
sponding segmentation/label map as training data. In 
order to improve the network capacity to generalize to 
unseen T1w images and increase the training corpus 
size, extensive data augmentation (DA) is applied on the 
training data. However, generalization to unseen con-
trasts and resolutions has shown limitations where seg-
mentation performance quickly decreases when used on 
images outside the training domain (Ghafoorian et  al., 
2017; Karani et al., 2018). This limitation is known as the 
“domain gap” problem (Pan & Yang, 2009). While this 
issue can be partially addressed by having multi-modality 

training data or test–time domain adaptation methods 
(Havaei et al., 2016; Karani et al., 2021), the network will 
still struggle when encountering completely unseen 
images. Alternatively, fine-tuning these models to new 
contrasts has shown great results. Ultimately, since this 
fine-tuning is required for every new contrast, this quickly 
becomes limiting in practice and not an “out-of-the-box” 
solution.

Historically, contrast invariance for brain MRI segmen-
tation has been successfully achieved through Bayesian 
segmentation (Van Leemput et al., 1999). However, this 
approach requires considerably more computational time 
than DL-based techniques. The fastest Bayesian tech-
niques can process one subject in ∼15 minutes (Puonti 
et al., 2016), whereas DL-based techniques require less 
than 1 minute. Consequently, contrast-invariant Bayesian 
segmentation techniques have been extremely challeng-
ing to implement in clinical settings.

Thus, a novel paradigm for DL training data where ran-
domly generated synthetic images are used instead of 
real images has emerged. This approach is called domain 
randomization (DR) and was proposed for brain segmen-
tation for the first time by Billot et al. (2023). More pre-
cisely, synthetic images are generated directly from label 
maps, using a fully randomized generative model creat-
ing images with random contrasts and augmentations 
that are far beyond what is actually realistic. In Billot et al. 
(2023), a novel segmentation tool, SynthSeg, was pro-
posed where this DR approach was combined with a 3D 
U-Net in order to segment MR brain images. SynthSeg 
demonstrated remarkable generalization to unseen con-
trasts and images with low signal-to-noise ratio (SNR) 
without the need for fine-tuning or retraining. Moreover, 
SynthSeg outperformed the state-of-the-art Bayesian 
approach SAMSEG (Puonti et al., 2016) in all tested data-
sets, in addition to being substantially faster. As a result, 
the approach proposed by SynthSeg has recently been 
used for other applications such as segmentation of 
white matter (WM) lesions or neonatal brain (Gibson 
et al., 2024; Valabregue et al., 2024), and is widely avail-
able through the FreeSurfer package and distributed with 
MATLAB (from R2022b and onward).

While both paradigms (real images + DA vs. synthetic 
images + DR) have been used for many different applica-
tions, none of them have been applied to UHF-MRI (i.e., 
≥ 7T). UHF-MRI accessibility has increased in the last 
decade and has even been used for large neuroimaging 
studies such as the Human Connectome Project (HCP) 
due to its higher SNR, contrast, and spatial resolution 
(Trattnig et al., 2018). Despite the several advantages of 
UHF-MRI, UHF images typically suffer from significant 
transmit radiofrequency (RF) inhomogeneities compared 
with lower field strengths, due to the shorter RF 
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wavelength (Schick, 2005). This results in significant sig-
nal and contrast inhomogeneities observed across the 
image (Webb & Collins, 2010). Although recent develop-
ments in parallel transmit (pTx) RF pulses have substan-
tially improved both signal and contrast homogeneity 
compared with single transmit (1Tx) pulses (Gras et al., 
2017), pTx pulses are not widely available and have yet to 
be applied in large neuroimaging studies.

This inaccessibility to large datasets with homoge-
neous UHF images has considerably hindered the devel-
opment of typical DL-based techniques from T1w 
images. Only one technique, CEREBRUM-7T, has been 
especially designed to segment 7T T1w MP2RAGE 
images (Svanera et al., 2021). Without retraining or fine-
tuning, CEREBRUM-7T can segment (0.63  mm)3 T1w 
MP2RAGE from the Glasgow dataset with a matrix shape 
of 256 ×  352 ×  224 into six labels: white matter (WM), 
gray matter (GM), ventricles, basal ganglia, cerebellum, 
and brainstem. Alternatively, considering the limited 
access to UHF-designed segmentation techniques, sev-
eral studies have been compelled to use 3T-designed 
tools such as FreeSurfer on 7T data by implementing 
extensive preprocessing on the images (Zaretskaya et al., 
2018). Additionally, FastSurferVINN, which proposes a 
solution for sub-millimeter T1w images at 3T, has also 
been recently tested at 7T with pTx T1w images and has 
shown promising results (Cabalo et al., 2025; Fortin et al., 
2025). Ultimately, while tools designed at 3T can be a 
solution for specific UHF T1w images acquired with pTx, 
they do not provide a reliable solution for most UHF data. 
Indeed, when both signal and contrast inhomogeneities 
and resolution differences with 3T are combined, seg-
mentation results are frequently unsatisfactory, requiring 
important visual quality assurance (QA) and even 
extremely time-consuming manual corrections.

Thus, considering the recent increased accessibility of 
UHF-MRI, there is an urgent need for developing novel 
automatic segmentation techniques able to address the 

new issues introduced with UHF-MRI. To the best of our 
knowledge, no DL technique currently exists to segment 
(1) T1w UHF images in more than six labels, (2) highly 
inhomogeneous 1Tx UHF images, or (3) non-T1w con-
trast UHF images.

In this work, we propose GOUHFI: Generalized and 
Optimized segmentation tool for ultra-high-field images. 
By adapting the DR approach proposed in Billot et  al. 
(2023) to the UHF-MRI context and using a state-of-the-
art DL architecture with an extensive training corpus, 
GOUHFI is able to segment UHF images of various con-
trasts and resolutions in clinically feasible times without 
fine-tuning or retraining. More precisely, we present in 
detail how GOUHFI was developed and trained, in addi-
tion to present its in-depth quantitative and qualitative 
evaluation against two other segmentation techniques at 
3T and 7T. Furthermore, GOUHFI’s performance against 
manual delineations at 9.4T and clinical relevance in vol-
umetry measurements between Parkinson’s disease 
patients and healthy controls was evaluated.

2.  METHODS

2.1.  Datasets

After conducting a comprehensive review of all sub-
millimeter MRI datasets freely available online, the eight 
following datasets were selected for training and testing 
GOUHFI. An overview of all these datasets is available in 
Table 1.

2.1.1.  Human Connectome Project: Young Adult

The Human Connectome Project Young Adult (HCP-YA) 
(Van Essen et  al., 2012) is a large neuroimaging study 
including structural and functional MR images obtained 
at 3T and 7T on healthy participants between the ages of 
22 and 35 years. For GOUHFI, a subset of 100 randomly 

Table 1.  Summary of the datasets used for training and/or testing in this work.

Dataset Field Strength Resolution Contrast Subjects Vendor Use N

HCP-YA 3T (0.7 mm)3 T1w/T2w Healthy Siemens Tr 80/20
SCAIFIELD 7T (pTx) (0.6 mm)3 T1w, MPM-T1w, 

-MTw,-PDw
Healthy Siemens Tr/Ts 31/10

UltraCortex 9.4T (1Tx) (0.6 mm)3/
(0.8 mm)3

T1w Healthy Siemens Tr/Ts 15/12

ABIDE-II ETHZ 3T (0.9 mm)3 T1w ASD Philips Tr 34
ABIDE-II EMC 3T (0.9 mm)3 T1w ASD GE Tr 46
MPI-CBS 7T (1Tx) (0.4 mm)3 T1w Healthy Siemens Ts 28
STRAT-PARK 7T (1Tx) (0.75 mm)3 T1w PDP/Healthy Siemens Ts 45
CEREBRUM-7T 7T (1Tx) (0.63 mm)3 T1w Healthy Siemens Ts 21
Human Brain Atlas 7T (1Tx) (0.25 mm)3 T1w Healthy Siemens Ts 1

The table lists the field strength, resolution, contrast, subject type, vendor, usage, and number of subjects for each dataset. ASD: autism 
spectrum disorder, PDP: Parkinson’s disease patients, Tr: training, Ts: test.
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selected subjects with preprocessed structural (0.7 mm)3 
T1w MPRAGE and T2w SPACE images acquired at 3T 
were used. The preprocessing steps included gradient 
distortion correction, coregistration, and averaging of 
both T1w and T2w runs individually (each sequence is 
acquired twice per session), Anterior Commissure-
Posterior Commissure (ACPC) registration, brain 
extraction, field map distortion correction, coregistration 
of T2w to the T1w, and a bias field correction. More 
details on the acquisition parameters of both MPRAGE 
and SPACE sequences and preprocessing steps can be 
found online.* The complete dataset is freely available 
online.† In this work, 80 subjects were used for training 
and 20 for testing.

2.1.2.  SpinoCerebellar Ataxias: Advanced Imaging 
with ultra-high-FIELD MRI

The SpinoCerebellar Ataxias: advanced imaging with 
ultra-high-FIELD MRI (SCAIFIELD) is a project aiming at 
establishing quantitative UHF-MRI biomarkers for poly-
glutamine SCAs.‡ For this purpose, a multi-center study 
has been conducted on 41 healthy participants with data 
acquired on two 7T MAGNETOM Terra and one 7TPlus 
MAGNETOM scanners (Siemens Healthineers, Erlangen, 
Germany) with the same 8Tx/32Rx head coil model in 
pTx mode. All sequences were acquired using Universal 
pTx RF Pulses (UP) (Gras et  al., 2017) created from a 
database of B0 and B1

+ maps acquired at each partner 
site. The imaging protocol included acquisition of a Multi-
Parameter-Mapping (MPM) dataset consisting of Magne-
tization Transfer-, T1- and Proton Density-weighted 
multi-echo spoiled gradient echo contrasts, and a T1w 
MPRAGE, all at (0.6 mm)3 resolution. For this study, 31 
subjects were used for training and 10 for testing. The 
first echo time images of the MPM images were also 
used for testing (denoted MPM-MTw, MPM-T1w, and 
MPM-PDw).

2.1.3.  UltraCortex

The UltraCortex (Mahler et  al., 2025) is a collaborative 
project between the Max Planck Institute for biological 
Cybernetics’ High-Field Magnetic Resonance and Uni-
versity Hospital Tübingen’s Biomedical Magnetic Reso-
nance Departments providing MR images acquired at 
9.4T on 78 healthy adult volunteers (M/F: 50/28, age 
range: 20–53 years old). In total, 86 examinations were 
performed with either the MPRAGE (n = 18) or MP2RAGE 

(n  =  68) sequence with sub-millimeter resolutions of 
(0.6 mm)3, (0.7 mm)3, and (0.8 mm)3, depending on the 
subject.§ The images were acquired on a 9.4T whole-
body MRI scanner (Siemens Healthineers, Erlangen, Ger-
many) with a 16-channel dual-row transmit array 
operating in CP+ mode paired with a 31-channel receive 
array. For MP2RAGE, the images were B1

+ corrected and 
the background noise was removed using the regulariza-
tion approach proposed in O’Brien et  al. (2014). All 
images were skull stripped using SynthStrip (Hoopes 
et al., 2022). Additionally, a set of manual segmentations 
for WM and GM is provided for 12 subjects which was 
used as a test dataset for this study (n  =  8 (0.6  mm)3 
MP2RAGE, n = 1 (0.8 mm)3 MP2RAGE and n = 3 (0.6 mm)3 
MPRAGE). These manual labels were first produced by 
FreeSurfer, manually corrected by student assistants and 
then validated by two expert neuroradiologists. More 
details on the data acquisition and processing can be 
accessed in Mahler et al. (2025).

2.1.4.  Autism Brain Imaging Data Exchange 
(ABIDE) II

The Autism Brain Imaging Data Exchange (ABIDE) II (Di 
Martino et al., 2017) is a large 3T dataset containing 1114 
subjects across 19 institutions with different autism spec-
trum disorders freely available online**. In this work, two 
sub-cohorts using T1w images at (0.9 mm)3 resolutions 
were used. The first one, named ETHZ, included 34 sub-
jects acquired with a 3T Philips Achieva scanner (Philips 
Healthcare, Best, Netherlands) at ETH Zurich. The sec-
ond sub-cohort, EMC, acquired 46 subjects with a 3T GE 
MRI scanner (General Electric Discovery MR750, Milwau-
kee, MI, USA) at the Erasmus University Medical Center 
in Rotterdam. More details about the scanning procedure 
and parameters can be obtained by following the link 
provided above. All images from both sub-cohorts were 
used for training.

2.1.5.  Max Planck Institute for Human Cognitive 
Brain Sciences

The Open Science CBS Neuroimaging Repository is a 
dataset repository containing high-resolution and quan-
titative MRI data acquired at 7T, with single-transmit 
channel, at the Max Planck Institute for Human Cogni-
tive Brain Sciences (MPI-CBS) in Leipzig (Tardif et al., 
2016). The dataset includes 28 MP2RAGE images 
acquired on healthy subjects (M/F: 13/15, age: 26 ± 4 
years old) at (0.5 mm)3 but reconstructed at a resolution 

*  https://www​.humanconnectome​.org​/storage​/app​/media​/documentation​
/s1200​/HCP​_S1200​_Release​_Reference​_Manual​.pdf
†  https://www​.humanconnectome​.org​/study​/hcp​-young​-adult
‡  https://www​.dzne​.de​/en​/research​/projects​/scaifield​/about/

§  https://www​.ultracortex​.org/
**  http://fcon​_1000​.projects​.nitrc​.org​/indi​/abide​/abide​_II​.html

https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://www.humanconnectome.org/study/hcp-young-adult
https://www.dzne.de/en/research/projects/scaifield/about/
https://www.ultracortex.org/
http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
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of (0.4  mm)3. All shared images have previously been 
skull stripped.

2.1.6.  STRAT-PARK

The START-PARK cohort (Stige et  al., 2024) is a large 
ongoing initiative trying to stratify Parkinson’s disease 
(PD) using a multi-disciplinary and multi-center longitudi-
nal cohort composed of PD and neurologically healthy 
control individuals from Norway and Canada. One branch 
of STRAT-PARK proposes to use 7T MRI to stratify PD 
individuals using a high-resolution, multi-contrast, and 
quantitative protocol including both anatomical and func-
tional images. As part of the imaging protocol, a (0.75 mm)3 
MP2RAGE was acquired with a 7T MAGNETOM Terra 
scanner (Siemens Healthineers, Erlangen, Germany) using 
1Tx channel. The MP2RAGE has been skull stripped in 
previous work done locally. For this project, a total of 45 
subjects were used for testing with 24 PD patients (PDP) 
(M/F: 13/11, age: 66 ± 7 years old) and 21 healthy controls 
(HC) (M/F: 10/11, age: 60 ± 9 years old).

2.1.7.  CEREBRUM-7T: Glasgow dataset

As part of the work presented in Svanera et al. (2021), the 
test dataset used to assess CEREBRUM-7T’s perfor-
mance composed of 21 scanning sessions (11 subjects) 
acquired with a Siemens 7T Terra MAGNETOM scanner 
at the Queen Elizabeth University Hospital (Glasgow, UK) 
was made available online.†† Each session contains a 
(0.63 mm)3 1Tx T1w MP2RAGE and the automatic seg-
mentations computed by CEREBRUM-7T. All 21 exam-
inations were used for testing GOUHFI against 
CEREBRUM-7T.

2.1.8.  Human Brain Atlas

The Human Brain Atlas (HBA) is an initiative from Schira 
et al. (2023) with the goal of creating an in vivo atlas of the 
human brain at (0.25 mm)3 resolution from 7T MR images. 
In order to do so, they have reconstructed a (0.25 mm)3 
T1w MP2RAGE from 11 individual (0.4  mm)3 1Tx T1w 
MP2RAGE scans from the same subject. This single sub-
ject, ultra-high resolution reconstructed MP2RAGE was 
used for testing GOUHFI. More details about the initiative 
and the data can be found online.‡‡

Each study was approved by the local review boards 
of each site/institution and participants of the individual 
studies signed a written informed consent form before 

scanning. Complete ethic statements are available at 
each respective study web pages and publications.

2.2.  Data processing

2.2.1.  Original label map production

All T1w images used in this study were segmented using 
FastSurferVINN (Henschel et al., 2022) (v2.3.0) with the 
–seg_only flag in order to produce automatic whole brain 
segmentations into 35 structures/labels. The list of labels 
produced by FastSurferVINN and used in this work, 
which follows the standard FreeSurfer lookup table con-
vention (Fischl et al., 2002), is available in Appendix A.1.

Since the T1w images from the SCAIFIELD and Ultra-
Cortex dataset have been acquired at UHF-MRI and were 
used for training in this study, extensive visual quality 
assurance (QA) has been conducted on all label maps 
produced by FastSurferVINN. For SCAIFIELD, the pTx 
MPRAGE images were N4-corrected (Tustison et  al., 
2010) before being segmented. For both datasets, sub-
jects where low segmentation quality due to motion or 
important signal inhomogeneities was detected were 
excluded from the training dataset. For UltraCortex, only 
15 of the 78 subjects with (0.8 mm)3 MP2RAGE images 
were assessed good enough to be used for training.

2.2.2.  Creation of new label maps and  
skull-stripped images

Skull stripping is a frequent preprocessing step done in 
most neuroimaging studies. However, non-brain tissues 
can remain since the skull-stripping quality is highly depen-
dent on many factors such as MR scanners, sequences 
used, and image quality (Kleesiek et al., 2016; Pei et al., 
2022). In order to simulate a low-quality skull-stripping 
procedure, new label maps with an “extra-cerebral” label 
were created from the original label maps produced by 
FastSurferVINN. First, morphological operations were 
applied on the brain mask generated by FastSurferVINN. 
Binary closing was applied to remove possible holes in the 
mask and dilation was then applied on the filled mask. The 
number of voxels used for dilation was four (UltraCortex 
and ABIDE-II) or five (HCP and SCAIFIELD) depending on 
the resolution of the label maps. These two steps were 
executed to correct in case of too stringent brain masking. 
This new mask was then used together with the original 
mask to create the new extra-cerebral label by assigning 
all voxels mutually exclusive to the new mask as this new 
extra-cerebral label (i.e., voxels present in the new mask 
but not in the original one). Then, the new label map was 
created by assigning this new label value to the corre-
sponding voxel position in its original label map.

††  https://search​.kg​.ebrains​.eu​/instances​/Dataset​/2b24466d​-f1cd​-4b66​
-afa8​-d70a6755ebea
‡‡  https://osf​.io​/ckh5t/

https://search.kg.ebrains.eu/instances/Dataset/2b24466d-f1cd-4b66-afa8-d70a6755ebea
https://search.kg.ebrains.eu/instances/Dataset/2b24466d-f1cd-4b66-afa8-d70a6755ebea
https://osf.io/ckh5t/
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Fig. 1.  Pipeline used to create the training data for GOUHFI. To produce the training data, the sub-millimeter T1w image 
was used as input to FastSurferVINN in order to create a label map of the whole brain with 35 labels. A new label map 
was then created by modifying the FastSurferVINN output by adding an extra-cerebral label based on the morphologically 
modified brain mask (dark gray area surrounding the cerebral cortex on the third sub-figure). This new label map was then 
used as input to the modified generative model from SynthSeg to create the randomly deformed version of it. Then, the 
augmented label map was used to generate the synthetic image where, as explained in Billot et al. (2023), a mean and 
standard deviation are randomly sampled from a normal distribution to generate a noisy signal for each label iteratively. 
Ultimately, the extra-cerebral label was kept for generating the synthetic images but excluded from the final label map 
in order to simulate signal surrounding the cortex such as CSF or remaining non-brain tissues from low-quality skull 
stripping. Finally, the generated synthetic image with its corresponding deformed label map (from which it was generated) 
was used as the training data (green box).

Once the new mask was created, the corresponding 
input T1w image from which the label map was created 
was masked to create a skull-stripped version. For multi-
contrast datasets such as the HCP and SCAIFIELD, all 
contrasts were coregistered before applying the mask-
ing. The rationale of using skull-stripped training data 
was based on (1) the fact that some of the datasets were 
directly shared as skull-stripped data, (2) the inaccessi-
bility to the whole-head segmentation algorithm used in 
SynthSeg, and (3) the lack of signal outside the brain for 
UHF-MRI data, making intensity-based whole-head seg-
mentation substantially harder than at 3T.

2.3.  Generation of synthetic training images

As described in Section  1, the core concept behind 
SynthSeg is the creation of a training dataset composed 
solely of synthetic images randomly generated from label 
maps, regardless of whether they were generated auto-
matically or manually (Billot et al., 2023). In order to cre-
ate synthetic images, the generative model uses fully 
randomized parameters from predefined priors, generat-
ing images with random (and unrealistic) contrasts, mor-
phologies, artifacts, and noise levels. For an exhaustive 
explanation behind the generative model developed in 
SynthSeg, we recommend the reader to consult Billot 
et al. (2023), since the focus of this section is toward vari-
ations from the original model.

In this work, the generative model used in SynthSeg 
was adapted for UHF images. More precisely, the param-
eter simulating bias field in the synthetic images was 
increased from 0.6 to 0.9 to simulate the large signal 
inhomogeneities frequently observed at UHF, and all 
parameters related to the randomized downsampling of 
the synthetic images were disabled to allow the creation 
of synthetic images at native sub-millimeter resolution. 
Unlike the original generative model implemented in 
SynthSeg, in which these structures were excluded, the 
choroid plexus (both hemispheres), cerebrospinal fluid 
(CSF), and WM hypointensities labels were incorporated 
into the generation of synthetic images. The extra-cerebral 
label was also included in the generative model to syn-
thesize the images, but was excluded from the final label 
maps. The rest of the generative model was kept as orig-
inally proposed and one synthetic image was generated 
per training label map. An example case is shown in  
Figure  1, and the parameters of the generative model 
used in this study are provided in Appendix A.2.

2.4.  Deep Learning model

2.4.1.  Training data

The training dataset used was composed of 206 different 
subjects from the HCP (n  =  80), SCAIFIELD (n  =  31), 
UltraCortex (n = 15), and ABIDE-II (n = 80) datasets with 
80% of the subjects randomly assigned as training with 
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the remaining 20% as validation using 5-fold cross-
validation. One aspect to achieve contrast agnosticity is 
the use of real MR images of different contrasts for the 
validation set, while the synthetic images are used for 
training only. In other words, if one subject was assigned 
to the validation set, the input T1w image and corre-
sponding label map were used and not the synthetic 
image produced by the generative model. Consequently, 
for the UltraCortex and ABIDE-II datasets, the T1w 
images with their corresponding label maps were used 
for validation, whereas for the HCP and SCAIFIELD, the 
T2w and PDw images were used, respectively, (both 
coregistered to their corresponding T1w image used for 
the label map creation).

2.4.2.  Network architecture

In this work, the nnUNet framework (v2.4.1) with residual 
encoder (Isensee et al., 2021, 2024) was used to imple-
ment the DL model. The “3D U-Net full image resolution” 
with “Large Presets” was selected as the configuration, 
considering the isotropic and sub-millimeter nature of the 
training data and hardware limitations. More precisely, a 
3D U-Net composed of 6 layers with 32, 64, 128, 256, 
320, and 320 features, using Leaky ReLU (Maas et al., 
2013), 3 × 3 × 3 kernel size for convolutions, with a patch 
size of 192 × 192 × 160 and a batch size of 2 was used. 
The loss function was the sum of the Dice and cross-
entropy losses (Drozdzal et al., 2016).

The data augmentation step performed by default by 
the nnUNet was disabled, since extensive data augmen-
tation was already applied by the DR approach used in 
the generation step of the synthetic images. Since the 
training dataset was composed of several resolutions, the 
median resolution of the training dataset ((0.7 mm)3) was 
used as the training resolution for the network. Conse-
quently, images and label maps at different resolutions 
were externally up- or down-sampled to the median res-
olution before being fed to the network. For images, 3D 
cubic spline interpolation was used, whereas 3D linear 
interpolation with one-hot encoding was used for label 
maps.

The complete description of all steps performed by 
the nnUNet framework can be found in Isensee et  al. 
(2021).

2.4.3.  Training setup

The model was trained for a total of 500 epochs for each 
fold, where 1 epoch was defined as 250 random mini-
batches fed to the network. The AdamW optimizer 
(Loshchilov, 2017) was utilized with a base learning rate 
(LR) of 3 × 10−4, decaying following the poly LR scheduler. 

The total training time was 6 days (1.2 days/fold) using an 
NVIDIA Ampere A40 GPU with 48 Gb of VRAM.

2.4.4.  Inference

Since 5-fold cross-validation was used (i.e., five sepa-
rate models were trained), an ensembling strategy, 
where the softmax outputs (i.e., probability for each 
label) from all models are averaged together, was used 
to produce a single output label map at inference. More-
over, after training all five models, the default post-
processing step proposed by nnUNet of keeping only 
the largest component for each label was tested with 
the validation dataset. For all labels, the average Dice 
score was computed with only the largest component 
compared with the value with all components for that 
label. Then, if the average Dice score was improved, the 
post-processing step would be executed for this label 
on any data to be inferred. For GOUHFI, this step was 
applied to all 35 labels except the Left- and Right-
Inferior-Lateral-Ventricles.

Since GOUHFI was trained with segmentations pro-
duced from FastSurferVINN, and U-Nets are sensitive to 
spatial localization, all data needed to be reoriented to 
the Left-Inferior-Anterior (LIA) orientation before being 
inferred. Moreover, the data to be inferred needed to be 
resampled to the training resolution of (0.7 mm)3 before 
being processed by the network. The data were then res-
ampled back to native resolution after being segmented. 
Inference, up/downsampling (if using a different resolu-
tion from the one used for training) and post-processing 
took approximately 60 seconds per 3D volume/image. All 
these steps are implemented in GOUHFI and all results 
shown in this work were computed with GOUHFI version 
1.1.0 available at https://github​.com​/mafortin​/GOUHFI​
/releases​/tag​/1​.1​.0.

2.5.  Evaluation metrics

2.5.1.  Quantitative evaluation

In order to assess the quality of the segmentations pro-
duced by GOUHFI, the Dice-Sørensen Similarity Coeffi-
cient (DSC) (Dice, 1945; Sorensen, 1948), which measures 
the overlap between two segments (with a value of 1 
being a perfect overlap between the two segments), was 
computed with the following equation:

	
DSC =

2× G∪P
G + P

,
	

(1)

where G is the ground truth segment, and P is the pre-
dicted segment to be compared.

https://github.com/mafortin/GOUHFI/releases/tag/1.1.0
https://github.com/mafortin/GOUHFI/releases/tag/1.1.0
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Moreover, the Average Surface Distance (ASD) (Reinke 
et  al., 2024), where a value of 0 represents a perfect 
alignment of both surfaces evaluated, was computed 
with the following equation:

	
ASD = i=1

NG∑ dG→P,i + i=1

NP∑ dP→G,i

NG + NP

.
	

(2)

Herein, dG→P,i is the distance from point i  on the sur-
face of the ground truth segment to its nearest point on 
the surface of the predicted segment; dP→G,i  is the dis-
tance from point i  on the surface of the predicted seg-
ment to its nearest point on the surface of the ground 
truth segment; NG and NP

 are the total number of points 
on the ground truth and predicted surfaces, respectively.

Except for the UltraCortex dataset where manual seg-
ments were available and the Glasgow dataset where the 
“inaccurate ground truth” (iGT) was used, the ground truth 
segmentations in this work were obtained by running 
FastSurferVINN on the sub-millimeter T1w images for the 
HCP-YA and the SCA-T1w test datasets. For SCA-MPM 
contrasts, SynthSeg was used as the ground truth. Thus, 
in these specific cases, the ground truth was considered a 
“silver standard” and a perfect DSC of 1.0 was not neces-
sarily desired, especially in cases where FastSurferVINN 
was prone to face difficulties (e.g., > 3T or < (0.7 mm)3 
resolution). Nevertheless, FastSurferVINN has previously 
shown robustness to resolutions < (0.7  mm)3 and pTx 
UHF-MRI data (Fortin et al., 2025). Both FastSurferVINN 
and SynthSeg are also the only “out-of-the-box” solutions 
to quantitatively evaluate GOUHFI against in most cases 
since CEREBRUM-7T requires retraining outside its train-
ing domain for every test dataset, and that producing 
manual delineations for 35 labels for many subjects was 
outside the scope of this work. For CEREBRUM-7T, the 
iGT was created by a combination of FreeSurfer, AFNI3d-
Seg (Cox, 1996), and methods from Fracasso et al. (2016) 
as described in Svanera et al. (2021).

In addition, while FastSurferVINN produces segmen-
tations at the native input image resolution, SynthSeg 
solely segments images at 1.0 mm3, irrespective of the 
input resolution of the images. In order to obtain label 
maps at the same resolution as GOUHFI and FastSurfer-
VINN and allow for quantitative comparisons, the same 
external up-sampling strategy using one-hot encoded 3D 
linear interpolation for label maps as done for GOUHFI 
was implemented in-house for SynthSeg.

For calculating DSC and ASD, the choroid plexus 
(both hemispheres) and WM-hypointensities were 
excluded since SynthSeg does not segment these labels. 
Consequently, the lateral and inferior lateral ventricles 
(both hemispheres) were also excluded since both 

regions are directly impacted by the presence of the cho-
roid plexus label. Finally, the CSF was also excluded 
since SynthSeg defines CSF in a completely different 
way than FastSurferVINN and GOUHFI. In case a label 
was missing in a label map (i.e., not segmented), DSC 
and ASD values were set to 0 and NaN, respectively.

2.5.2.  STRAT-PARK: Volumetry analysis

To further assess GOUHFI’s performance, a volumetric 
analysis was performed with the START-PARK dataset. 
For both HC and PDP, the median group volume for the 
putamen, amygdala, and hippocampus, normalized by 
the total intracranial volume (TIV), was computed based 
on the segmentations produced by FastSurferVINN, 
GOUHFI, and SynthSeg. The TIV values were computed 
with SPM12 (Ashburner, 2012) and the region-of-interest 
(ROI) volumes were computed by multiplying the voxel 
volume by the number of voxels for each ROI. These 
ROIs were selected based on the literature for PD (Geng 
et al., 2006; Junqué et al., 2005; Pieperhoff et al., 2022). 
A Mann–Whitney U test (Mann & Whitney, 1947) with 
Bonferroni-corrected p-values (Bonferroni, 1936) was 
computed to measure the statistical differences between 
each group for both segmentation tools.

3.  RESULTS

3.1.  HCP-YA: Benchmarking against 
FastSurferVINN and SynthSeg at 3T

The segmentations produced by SynthSeg and GOUHFI 
for both T1w and T2w (0.7 mm)3 3T images and by Fast-
SurferVINN for the T1w images only are shown in Fig-
ure 2. No segmentation is shown for the T2w images for 
FastSurferVINN since the technique segments T1w 
images only. Visually, segmentations produced on both 
the T1w and T2w images were extremely similar to the 
ones produced by FastSurferVINN for both SynthSeg 
and GOUHFI. Visually, differences in cortex and cerebel-
lum WM delineations could be observed for SynthSeg 
compared with GOUHFI. Moreover, the segmentation 
boundary of the putamen was extended laterally for 
SynthSeg compared with both FastSurferVINN and 
GOUHFI. For SynthSeg, the thalamus delineation was 
different following a more irregular boundary than the two 
other techniques as seen with the axial plane. The median 
and 95% confidence intervals (CI) for the DSC and ASD 
computed across all subjects (n = 20) and labels with a 
selected subset are given in Table  2. Overall, GOUHFI 
produced higher and lower median DSC and ASD values, 
respectively, for all labels except for the cerebellum WM 
and cortex compared with SynthSeg.
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3.2.  SCAIFIELD: Contrast- and resolution-agnostic 
performance at 7T

In Figure 3, the segmentations produced by GOUHFI and 
SynthSeg for all four contrasts and by FastSurferVINN for 
the T1w MPRAGE are shown. As for the HCP dataset 

shown in Section 3.1, the segmentations computed by 

GOUHFI and SynthSeg are visually highly similar to the 

one from FastSurferVINN for the SCA-T1w. This is also 

demonstrated quantitatively with the DSC and ASD val-

ues reported in the first column of Table 3. Even when 

Fig. 2.  Segmentations produced by FastSurferVINN (second column), SynthSeg (third column), and GOUHFI (right 
column) for one subject in all anatomical planes for the T1w (top) and T2w (bottom) contrasts from the HCP dataset (3T). 
No segmentations are shown for the T2w image for FastSurferVINN since it only segments T1w images. Dark blue arrows 
represent regions of discrepancies for the thalamus region with the ground truth for SynthSeg. Turquoise arrows point to 
cortical regions with limited delineation by SynthSeg. Green arrows show systematic errors with SynthSeg including the 
claustrum in the putamen label. Yellow arrows show differences in cerebellum WM segmentation. The labels shown and 
their colors correspond to the FreeSurfer lookup table.
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using a pTx excitation combined with N4-correction for 
the MPRAGE images, signs of limited segmentation 
capacities for 7T images started to appear for FastSurfer-
VINN as shown with the blue arrows in Figure 3. Overall, 
SynthSeg demonstrated a lower capacity to accurately 
delineate thin cerebellum WM branches in addition of 
grossly overestimating size of WM in small folded WM-
cortex boundary regions across all contrasts tested com-
pared with GOUHFI (red arrows on Fig.  3). For the 
SCA-T1w case, GOUHFI had consistently better DSC 
and ASD values than SynthSeg for all labels tested with a 
marked difference for the cortex.

The performance of GOUHFI, SynthSeg, and Fast-
SurferVINN on one subject, for which an 1Tx (0.6 mm)3 
MPRAGE acquisition was acquired (neither part of the 
training nor the test datasets), is demonstrated in Fig-
ure 4. GOUHFI and SynthSeg created substantially better 
segmentations than FastSurferVINN as expected, espe-
cially in regions affected by signal and contrast alterations 
related to reduced RF transmit inhomogeneities. How-
ever, as similarly shown in Figure 3, SynthSeg also showed 
limited capacity to properly identify the boundary between 
WM and cortex in some regions compared with GOUHFI.

3.3.  Glasgow dataset: GOUHFI versus 
CEREBRUM-7T

GOUHFI and SynthSeg were tested against CERE-
BRUM-7T, the only brain segmentation technique opti-

mized for 7T images. The results for one example subject 
are shown in Figure 5. The DSC and ASD values com-
puted for CEREBRUM-7T, SynthSeg, and GOUHFI 
against the iGT are reported in Table 4. Both GOUHFI and 
SynthSeg produced highly similar segmentations 
between each other and to CEREBRUM-7T, although 
CEREBRUM-7T being the method with the highest DSC 
and ASD with the iGT across all labels.

3.4.  MPI-CBS: GOUHFI and SynthSeg performance 
for ultra-high-resolution and inhomogeneous 7T 
images

Three example subjects from the MPI-CBS with (0.4 mm)3 
1Tx MP2RAGE acquired at 7T and their corresponding 
segmentations produced by SynthSeg and GOUHFI are 
displayed in Figure  6. Although the network segments 
images at (0.7 mm)3 (resolution used by the network for 
training), the ultra-high resolution of this dataset posed 
no problem for GOUHFI to properly delineate the brain 
regions at (0.4 mm)3. However, since it was only trained 
with label maps at 1 mm3, SynthSeg showed a limited 
capacity to show the same level of details especially for 
the cortex and cerebellum WM branches as also reported 
in previous sections. Both techniques were able to man-
age the high level of inhomogeneity and noise present in 
the images. For subject 16, SynthSeg showed superior 
identification of the cerebellum cortex in comparison with 
GOUHFI. However, in all cases, SynthSeg systematically 

Table 2.  Median DSC and ASD values (with 95% CIs) computed for HCP subjects (n = 20) using GOUHFI and SynthSeg.

DSC

HCP-T1w HCP-T2w

GOUHFI SynthSeg GOUHFI SynthSeg

WM 0.96 [0.96, 0.97] 0.93 [0.92, 0.93] 0.95 [0.94, 0.95] 0.90 [0.90, 0.91]
Cortex 0.92 [0.92, 0.92] 0.88 [0.88, 0.88] 0.90 [0.90, 0.90] 0.85 [0.85, 0.85]
Putamen 0.94 [0.93, 0.94] 0.90 [0.89, 0.90] 0.92 [0.91, 0.92] 0.88 [0.88, 0.89]
Thalamus 0.93 [0.92, 0.93] 0.91 [0.91, 0.92] 0.92 [0.91, 0.92] 0.92 [0.92, 0.92]
Pallidum 0.85 [0.84, 0.86] 0.82 [0.81, 0.83] 0.84 [0.83, 0.85] 0.81 [0.79, 0.81]
Cerebellum WM 0.87 [0.87, 0.87] 0.88 [0.88, 0.89] 0.85 [0.85, 0.85] 0.87 [0.87, 0.87]
Cerebellum Cortex 0.90 [0.89, 0.90] 0.93 [0.92, 0.93] 0.89 [0.88, 0.89] 0.91 [0.90, 0.91]
Median (27 labels) 0.91 [0.90, 0.91] 0.89 [0.88, 0.89] 0.89 [0.88, 0.89] 0.87 [0.86, 0.87]

ASD [mm]

HCP-T1w HCP-T2w

GOUHFI SynthSeg GOUHFI SynthSeg

WM 0.19 [0.19, 0.19] 0.34 [0.33, 0.34] 0.27 [0.27, 0.29] 0.41 [0.40, 0.42]
Cortex 0.26 [0.26, 0.33] 0.36 [0.36, 0.37] 0.31 [0.31, 0.33] 0.42 [0.42, 0.43]
Putamen 0.32 [0.32, 0.34] 0.54 [0.53, 0.57] 0.40 [0.40, 0.43] 0.62 [0.60, 0.66]
Thalamus 0.52 [0.51, 0.57] 0.56 [0.55, 0.60] 0.61 [0.59, 0.65] 0.54 [0.54, 0.58]
Pallidum 0.54 [0.51, 0.58] 0.56 [0.55, 0.61] 0.58 [0.57, 0.62] 0.62 [0.62, 0.69]
Cerebellum WM 0.67 [0.63, 0.70] 0.54 [0.51, 0.59] 0.81 [0.79, 0.86] 0.62 [0.60, 0.67]
Cerebellum Cortex 0.90 [0.87, 0.95] 0.57 [0.56, 0.59] 0.93 [0.91, 0.99] 0.66 [0.64, 0.68]
Median (27 labels) 0.45 [0.43, 0.47] 0.50 [0.48, 0.50] 0.47 [0.51, 0.54] 0.55 [0.54, 0.56]

The ground truth is the segmentation produced by FastSurferVINN at native resolution using the T1w images. The highest DSC (and 
lowest ASD) value is shown in bold.
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Fig. 3.  Segmentations produced by FastSurferVINN (first row), SynthSeg (second row), and GOUHFI (bottom row) for 
one subject in the coronal (top part) and sagittal (bottom part) planes for the T1w MPRAGE (left), MPM-MTw (second 
from the left), MPM-PDw (second from the right), and MPM-T1w (right) contrasts from the SCAIFIELD dataset (7T). All 
images and segmentations have a resolution of (0.6 mm)3. The MPRAGE images have been N4-corrected whereas all 
MPM contrasts have not. Segmentations from FastSurferVINN are shown for the T1w image only since it only segments 
T1w images. Blue arrows represent regions of mislabeling from FastSurferVINN (used as ground truth), whereas green 
arrows show discrepancies between the different MPM contrasts. Pink arrows represent mislabeling of cerebellum WM by 
SynthSeg. Red arrows represent mislabeling between WM and cortex inside the cerebrum where SynthSeg overestimated 
WM segmentation. The labels shown and their colors correspond to the FreeSurfer lookup table.
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and inaccurately overextended laterally the cerebellum 
cortex.

3.5.  UltraCortex: Performance of GOUHFI and 
SynthSeg against manual white and gray matter 
delineations at 9.4T

In Table 5, the median DSC and ASD values computed 
for GOUHFI and SynthSeg against the manual delinea-
tions for WM and GM are reported for the UltraCortex 
dataset. GOUHFI systematically outperformed SynthSeg 
for every label and sub-dataset, with a substantial advan-
tage for the cortex label with up to 7 Dice points improve-
ment over SynthSeg.

3.6.  STRAT-PARK: Parkinson’s disease volumetry 
study at 7T

The volumetric analysis results are shown in Figure 7. The 
same consistent decrease trend between HC and PDP 
was observed for all techniques for the putamen, hippo-
campus, and amygdala. It was only for putamen that all 
techniques presented a statistically significant difference 
between both HC and PDP sub-groups. For GOUHFI, the 
median volumes measured were larger than FastSurfer-
VINN for both HC and PDP, whereas the opposite trend 

was observed for the amygdala. However, the median 
volume computed for the amygdala for SynthSeg was 
considerably and unexpectedly larger than both Fast-
SurferVINN and GOUHFI. The p-values calculated were 
the following for FastSurferVINN/GOUHFI/SynthSeg: 
0.002/0.004/0.0004 for putamen, 0.22/1.0/0.31 for hippo-
campus, and 0.36/0.06/0.27 for amygdala (Bonferroni-
corrected significance threshold: p-value < 0.006).

3.7.  Human Brain Atlas: Ultra-High Resolution at 7T

Zoomed-in coronal views of the (0.25  mm)3 segmenta-
tions produced by FastSurferVINN, SynthSeg, and 
GOUHFI for the cerebellum and parietal lobe are pre-
sented in Figure  8. For FastSurferVINN, a significant 
amount of cerebellar WM branches was not segmented 
even in regions not affected by signal inhomogeneities as 
shown with the green arrows. Although improvements 
were noticeable with SynthSeg, the best overall detection 
and segmentation of cerebellum WM was done by 
GOUHFI. Moreover, perivascular spaces (PVS) in WM, 
which become more easily visible at this resolution, were 
often segmented as background or cortex for FastSurfer-
VINN (blue arrows in Fig.  8), whereas SynthSeg and 
GOUHFI segmented them as WM. SynthSeg showed lim-
itations in some cortex regions with noticeable mislabeling 

Table 3.  Median DSC and ASD values (with 95% CIs) computed for the four contrasts in the SCAIFIELD dataset (n = 10) 
using GOUHFI and SynthSeg.

DSC

SCA-T1w (GTFSV) MPM (GTSynthSeg)

GOUHFI SynthSeg MPM-MTw* MPM-T1w MPM-PDw

WM 0.97 [0.97, 0.97] 0.92 [0.92, 0.92] 0.92 [0.92, 0.93] 0.90 [0.90, 0.90] 0.90 [0.89, 0.90]
Cortex 0.91 [0.90, 0.92] 0.82 [0.81, 0.82] 0.87 [0.87, 0.88] 0.87 [0.86, 0.87] 0.85 [0.84, 0.86]
Putamen 0.94 [0.93, 0.94] 0.91 [0.90, 0.91] 0.91 [0.91, 0.92] 0.88 [0.87, 0.89] 0.87 [0.85, 0.88]
Thalamus 0.94 [0.93, 0.94] 0.92 [0.91, 0.92] 0.91 [0.91, 0.93] 0.93 [0.92, 0.93] 0.92 [0.91, 0.92]
Pallidum 0.88 [0.86, 0.89] 0.86 [0.84, 0.86] 0.85 [0.80, 0.87] 0.80 [0.78, 0.22] 0.78 [0.74, 0.81]
Cerebellum WM 0.91 [0.90, 0.91] 0.87 [0.87, 0.88] 0.89 [0.88, 0.90] 0.82 [0.81, 0.83] 0.90 [0.89, 0.90]
Cerebellum Cortex 0.94 [0.93, 0.94] 0.91 [0.90, 0.91] 0.93 [0.92, 0.93] 0.92 [0.91, 0.92] 0.93 [0.93, 0.93]
Median (27 labels) 0.91 [0.90, 0.91] 0.88 [0.87, 0.88] 0.89 [0.87, 0.89] 0.87 [0.85, 0.86] 0.84 [0.82, 0.84]

ASD [mm]

SCA-T1w (GTFSV) MPM (GTSynthSeg)

GOUHFI SynthSeg MPM-MTw* MPM-T1w MPM-PDw

WM 0.13 [0.13, 0.14] 0.36 [0.35, 0.36] 0.44 [0.41, 0.46] 0.54 [0.52, 0.57] 0.57 [0.54, 0.61]
Cortex 0.23 [0.22, 0.25] 0.45 [0.44, 0.46] 0.50 [0.47, 0.52] 0.52 [0.49, 0.58] 0.61 [0.59, 0.70]
Putamen 0.26 [0.25, 0.31] 0.47 [0.45, 0.50] 0.41 [0.38, 0.44] 0.54 [0.53, 0.65] 0.63 [0.55, 0.67]
Thalamus 0.41 [0.39, 0.48] 0.49 [0.49, 0.55] 0.55 [0.51, 0.65] 0.50 [0.48, 0.55] 0.61 [0.57, 0.66]
Pallidum 0.43 [0.38, 0.46] 0.45 [0.44, 0.51] 0.72 [0.61, 0.87] 0.78 [0.71, 0.82] 0.79 [0.77, 1.01]
Cerebellum WM 0.32 [0.29, 0.34] 0.45 [0.43, 0.51] 0.51 [0.45, 0.54] 0.69 [0.67, 0.77] 0.53 [0.52, 0.58]
Cerebellum Cortex 0.49 [0.46, 0.55] 0.65 [0.64, 0.67] 0.59 [0.55, 0.63] 0.65 [0.63, 0.69] 0.65 [0.61, 0.65]
Median (27 labels) 0.34 [0.34, 0.38] 0.48 [0.48, 0.52] 0.50 [0.48, 0.53] 0.56 [0.56, 0.61] 0.64 [0.66, 0.72]

The ground truth for SCA-T1w was the segmentation produced by FastSurferVINN at native resolution using the N4-corrected pTx T1w 
images (GTFSV) whereas for the three MPM contrasts, the up-sampled segmentation produced by SynthSeg was used (GTSynthSeg). For the 
comparison of GOUHFI and SynthSeg versus FastSurferVINN, the highest DSC (and lowest ASD) value is shown in bold.
*A subset of four subjects was used for MPM-MTw since several subjects did not include an MTw MPM scan.
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of non-cortical voxels as cortex. Furthermore, SynthSeg 
segmentation showed non-smooth, step-like delinea-
tions, which FastSurferVINN and GOUHFI did not show.

3.8.  Impact of label granularity from 3T to UHF-MRI

Figure  9 illustrates the impact of training GOUHFI with 
label maps generated by FastSurferVINN, tailored to the 
granularity level typical at 1.5–3T, when applied to UHF 
images. FastSurferVINN performed the poorest among 
the three techniques at properly delineating the putamen 
by systematically including the claustrum in all examples 
shown. In contrast, although some small portions of the 
claustrum were still included or, alternatively, the bound-
ary of the putamen was slightly misaligned, GOUHFI per-
formed the best and was the least affected technique by 
this systematic error among the three. Additionally, for 
the MPI-CBS and HBA cases where different sub-fields 
boundaries of the thalamus were discernible, all tech-
niques struggled to accurately identify the thalamus 

boundary, which resulted in all of them creating a ficti-
tious boundary that did not reflect the internal contrast 
observed.

4.  DISCUSSION

In this study, a novel DL-based segmentation technique 
capable of segmenting brain MR images of any contrast 
and resolution is proposed. As shown, GOUHFI was able 
to accurately segment MR images acquired at 3T, 7T, and 
9.4T with a total of six different contrasts and seven dif-
ferent resolutions. GOUHFI performed well on highly 
inhomogeneous 1Tx images acquired at 7T and 9.4T 
where standard tools are prone to failure. Moreover, 
GOUHFI demonstrated highly similar performance 
against domain-specific techniques such as FastSurfer-
VINN or CEREBRUM-7T when tested in their respective 
domains while also consistently outperforming SynthSeg, 
the only DL-based contrast-agnostic segmentation tool 
available. Ultimately, when used to assess its ability to 

Fig. 4.  Visual comparison between the segmentations produced by FastSurferVINN (second row), SynthSeg (third row), 
and GOUHFI (bottom row) on a 1 Tx MPRAGE acquired for one additional SCAIFIELD subject (7T). Significant signal and 
contrast inhomogeneities are present. This subject was neither included in the training nor in the testing datasets. The 
sagittal (first column) and coronal (second column) planes with a zoomed-in version of another coronal slice (third column) 
with the segmentation borders overlaid are shown. All images and segmentations have a resolution of (0.6 mm)3. Blue 
arrows represent FastSurferVINN and SynthSeg outputs being affected by signal inhomogeneities. The green arrows show 
the difference in cerebellar cortex delineation between SynthSeg and GOUHFI. Yellow arrows show segmentation errors by 
SynthSeg for the cerebellum WM and cortex. The labels shown and their colors correspond to the FreeSurfer lookup table.
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Fig. 5.  Segmentations produced by CEREBRUM-7T (third row), SynthSeg (fourth row), GOUHFI (last row) with 
the corresponding iGT (second row the top) for one subject in all anatomical planes from the test dataset used for 
CEREBRUM-7T. All images and segmentations have a resolution of (0.63 mm)3. Yellow arrows point to regions where the 
iGT (ground truth) seems sub-optimal compared with CEREBRUM-7T, SynthSeg, and GOUHFI. The labels shown here are 
gray matter (blue), white matter (red), ventricles (purple), basal ganglia (white), and cerebellum (violet). The brainstem is 
also segmented but not visible in this figure.



15

M.-A. Fortin, A.L. Kristoffersen, M.S. Larsen et al.	 Imaging Neuroscience, Volume 3, 2025

Table 4.  Median DSC and ASD values (with 95% CIs) for each label across all test cases (n = 21) using segmentations 
from CEREBRUM-7T, GOUHFI, and SynthSeg.

DSC CEREBRUM-7T GOUHFI SynthSeg

WM 0.94 [0.94, 0.94] 0.92 [0.91, 0.92] 0.90 [0.89, 0.91]
Cortex 0.91 [0.90, 0.91] 0.86 [0.86, 0.86] 0.83 [0.83, 0.84]
Basal ganglia 0.89 [0.89, 0.90] 0.86 [0.86, 0.87] 0.87 [0.86, 0.88]
Ventricles 0.86 [0.85, 0.87] 0.85 [0.83, 0.86] 0.84 [0.83, 0.86]
Brainstem 0.93 [0.92, 0.93] 0.91 [0.90, 0.91] 0.91 [0.90, 0.91]
Cerebellum 0.93 [0.88, 0.94] 0.92 [0.86, 0.92] 0.89 [0.83, 0.90]
Median 0.91 [0.90, 0.91] 0.88 [0.87, 0.89] 0.88 [0.86, 0.87]

ASD [mm] CEREBRUM-7T GOUHFI SynthSeg

WM 0.24 [0.24, 0.25] 0.35 [0.34, 0.36] 0.44 [0.43, 0.45]
Cortex 0.28 [0.28, 0.29] 0.43 [0.42, 0.44] 0.50 [0.49, 0.50]
Basal ganglia 0.48 [0.46, 0.50] 0.60 [0.56, 0.63] 0.59 [0.56, 0.63]
Ventricles 0.35 [0.34, 0.45] 0.39 [0.37, 0.46] 0.38 [0.36, 0.47]
Brainstem 0.43 [0.41, 0.48] 0.54 [0.51, 0.64] 0.53 [0.50, 0.62]
Cerebellum 0.68 [0.63, 1.21] 0.90 [0.87, 1.51] 1.26 [1.18, 1.89]
Median 0.38 [0.40, 0.52] 0.49 [0.52, 0.66] 0.51 [0.58, 0.76]

Ground truth is the iGT as described in Svanera et al. (2021). The highest DSC (and lowest ASD) is shown in bold.

Fig. 6.  Segmentation results produced by SynthSeg (middle column) and GOUHFI (right column) for three subjects from 
the MPI-CBS dataset in the coronal plane. All images were acquired at 7T with 1Tx (0.4 mm)3 MP2RAGE (same resolution 
for the segmentations). Red arrows point to segmentation errors in cortex and cerebellum cortex delineations.
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detect volumetric changes in Parkinson’s disease, 
GOUHFI showed similar performance to FastSurferVINN 
and SynthSeg to monitor volume losses in accordance 
with the literature.

4.1.  Training label maps

All previous DL-based segmentation techniques that have 
been trained on automatically produced label maps have 
used FreeSurfer to produce the training label maps. To the 
best of our knowledge, GOUHFI is the first technique to 
use FastSurferVINN-based label maps in the training 
dataset. This choice was made based on the fact that the 
label maps produced by FreeSurfer, even with the sub-
millimeter option selected, produced coarse delineations 

of the labels (see Appendix Fig. A.1 in Appendix A.3). 
While, in theory, the label maps created by FreeSurfer are 
at the same resolution as the input images, the “effective 
resolution” of the label maps is visibly lower. Considering 
that only sub-millimeter resolutions were used for training 
and that the intended usage of GOUHFI is for sub-
millimeter images, FastSurferVINN was preferred since it 
produced more refined delineations than FreeSurfer.

In this study, only automatically produced label maps 
were used for the training corpus, as it was done for Fast-
SurferVINN. While this could be a potential issue when 
using real UHF images for training, this is not the case 
when using synthetic images. If minor segmentation 
errors with respect to the corresponding real T1w input 
image would be present in the label map (e.g., small parts 

Table 5.  Median DSC and ASD values (with 95% CIs) computed for the WM and GM segmentations (left and right 
hemispheres combined) produced by GOUHFI and SynthSeg for subjects with manual segments provided in the 
UltraCortex dataset ((0.6 mm)3 MP2RAGE nsub = 8, (0.6 mm)3 MPRAGE nsub = 3 and (0.8 mm)3 MP2RAGE nsub = 1.).

DSC

(0.6 mm)3 MP2RAGE (0.6 mm)3 MPRAGE (0.8 mm)3 MP2RAGE

GOUHFI SynthSeg GOUHFI SynthSeg GOUHFI SynthSeg

White matter 0.97 [0.97, 0.97] 0.94 [0.94, 0.94] 0.97 [0.96, 0.97] 0.93 [0.93, 0.94] 0.95 [-, -] 0.93 [-, -]
Cortex 0.91 [0.91, 0.91] 0.85 [0.84, 0.85] 0.90 [0.89, 0.92] 0.85 [0.84, 0.87] 0.89 [-, -] 0.83 [-, -]

ASD [mm]

(0.6 mm)3 MP2RAGE (0.6 mm)3 MPRAGE (0.8 mm)3 MP2RAGE

GOUHFI SynthSeg GOUHFI SynthSeg GOUHFI SynthSeg

White matter 0.26 [0.25, 0.29] 0.39 [0.37, 0.39] 0.27 [0.25, 0.32] 0.44 [0.43, 0.44] 0.35 [-, -] 0.44 [-, -]
Cortex 0.25 [0.25, 0.27] 0.45 [0.44, 0.46] 0.29 [0.26, 0.35] 0.44 [0.39, 0.47] 0.33 [-, -] 0.48 [-, -]

The highest DSC (and lowest ASD) are shown in bold.

Fig. 7.  Box plots showing the normalized volumes measured by FastSurferVINN (left), GOUHFI (middle), and SynthSeg 
(right) for healthy controls (HC) and Parkinson’s disease patients (PDP) for the putamen, hippocampus, and amygdala. For 
putamen, the three techniques had a statistically significant difference in volume between HC and PDP after Bonferroni 
correction.
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missing from the cerebellum or temporal lobes due to 
inhomogeneities), these errors would be “lost” during the 
creation of the synthetic image for that subject. By 
design, the synthetic images and corresponding label 
maps are perfectly aligned with each other. As mentioned 
in Billot et  al. (2023), and again demonstrated in this 
study, the usage of automatically produced label maps 
for synthetic training data is not only possible, but highly 
recommended since it allows to considerably increase 
the number of training cases. In fact, even for techniques 
such as FastSurferVINN, which are not based on syn-
thetic training images, the size of the training corpus was 
shown to be the most important factor to improve the 
model (Henschel et al., 2022). Ultimately, as mentioned in 

the Methods section, extensive visual QA was done on 
the label maps produced by FastSurferVINN for the UHF 
images before including them in the study (only 15 out of 
the 78 subjects were kept from the UltraCortex dataset). 
Since real images were used for validation, we had to 
make sure that both the quality of the T1w images and 
label maps were good enough since mismatch between 
both would negatively impact the validation process.

4.2.  HCP-YA: Benchmarking against 
FastSurferVINN and SynthSeg at 3T

For both contrasts tested from the 3T HCP-YA dataset, 
GOUHFI performed remarkably well and systematically 

Fig. 8.  Segmentations produced by FastSurferVINN (second row), SynthSeg (third row), and GOUHFI (last row) at 
(0.25 mm)3 for the averaged T1w image in the coronal plane for subject 001 from the Human Brain Atlas dataset (7T). 
The first column shows a zoomed-in version of the cerebellum and temporal lobe, whereas the second column shows 
the parietal lobe. Green arrows show differences in segmentations between the three methods for fine cerebellar WM 
branches and their corresponding segmentations, whereas blue arrows show the perivascular spaces inside WM. 
Turquoise arrows point to cortex segmentation errors for SynthSeg.
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better than SynthSeg. The only ROIs where SynthSeg 
produced better DSC and ASD values than GOUHFI were 
for the cerebellar WM and cortex. That can be explained 
by the similar behavior of SynthSeg to reproduce the lim-
ited identification of inferior cerebellar WM branches like 
FastSurferVINN does. Indeed, GOUHFI detected sub-
stantially more cerebellar WM than both FastSurferVINN 
(reference technique) and SynthSeg, resulting in lower 
DSC and ASD for both cerebellar WM and cortex. Inter-
estingly, GOUHFI used the same DR approach to create 
the synthetic training data as SynthSeg. However, for 
GOUHFI, it resulted in a superior detection of the thin 
cerebellar WM branches and cortex sulci. Thus, the fact 
that (1) GOUHFI was trained using only sub-millimeter 
label maps (with (0.7 mm)3 as the training resolution) and 
(2) the randomized downsampling step as done in 
SynthSeg was disabled could explain this improved iden-
tification of high-resolution anatomy features.

Moreover, the T1w MPRAGE images gave higher DSC 
and lower ASD values than the T2w images, although only 
T2w from this dataset was used for the validation set 
during training. One can argue that T1w was well repre-
sented in the validation dataset. However, all other T1w 
images used for validation were either from a different 
vendor (ABIDE-II ETH: Philips Achieva with 3D TFE 
sequence & ABIDE-II EMC: GE MR750 with IR-FSPGR 
sequence) or different field strength and sequence (Ultra-
Cortex: 9.4T with MP2RAGE). Another possible explana-

tion for this could be that it is a consequence of using 
label maps originally produced from T1w images for the 
creation of the synthetic training data, which all exhibit the 
same T1w-visible structures. Ultimately, the finding that 
GOUHFI produced segmentations with DSC ≥ 0.88 and 
ASD smaller than 1 voxel over 27 labels and 20 subjects 
in FastSurferVINN’s domain (i.e., 3T (0.7  mm)3 T1w 
MPRAGE) is a strong indication of its robustness and 
comparable performance for segmentation tasks even 
outside GOUHFI’s optimized domain (i.e., UHF-MRI) while 
also being superior to alternatives such as SynthSeg.

4.3.  SCAIFIELD: Contrast- and resolution-agnostic 
performance at 7T

The SCAIFIELD dataset served as an excellent test data-
set for GOUHFI considering its variety of contrasts, reso-
lution different from the trained one, and its UHF nature. 
GOUHFI demonstrated its contrast-agnostic perfor-
mance by segmenting all four contrasts well. Overall, 
GOUHFI showed a significantly higher level of details 
than SynthSeg, especially within the cortex and both the 
cerebellar WM and cortex labels as similarly reported for 
the HCP-YA dataset. These observations reinforce the 
idea that SynthSeg’s use of 1.0 mm3 training resolution, 
combined with the random down-sampling of the training 
label maps, negatively impacts the quality of the seg-
mentations for UHF images.

Fig. 9.  Close-up view of an axial slice showing the segmentations of the putamen, pallidum, thalamus, and cortex 
in the right hemisphere by FastSurferVINN (first row), SynthSeg (second row), and GOUHFI (last row) overlaid on the 
corresponding T1w image used for segmentation. Red arrows show cases where significant parts of the claustrum are 
segmented as putamen. Yellow arrows show cases where a small portion of the claustrum is included or that the boundary 
of the putamen is slightly misaligned with its actual border while not including the claustrum. Orange arrows represent 
ultra-high-resolution cases where subfields of the thalamus can be observed while not being properly segmented.
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For the three MPM contrasts, with SynthSeg as the 
reference technique, the MPM-PDw image appeared to 
be the most challenging to segment based on the quan-
titative metrics computed. However, one could argue that 
the segmentations displayed in Figure  3 for GOUHFI 
showed a lower level of detail for the MPM-T1w than the 
MPM-PDw, especially in the cerebellum. Ultimately, the 
better quantitative performance of MPM-T1w over MPM-
PDw might be explainable by one simple observation: 
SynthSeg has limited capacity to segment lower contrast 
regimes at high resolutions such as the MPM-PDw and 
MPM-T1w, resulting in a poor reference to compare 
GOUHFI with. Nonetheless, it is important to mention 
that GOUHFI was also challenged by the low level of con-
trast in the MPM-T1w, but appeared to segment only vis-
ible structures rather than inferring or “hallucinating” 
invisible regions (cf. pink arrows pointing to cerebellum 
WM in the coronal view of SynthSeg for the MPM-T1w). 
Ultimately, the “better” quantitative performance for the 
MPM-T1w is probably due to a poorer but “matched” 
performance between SynthSeg and GOUHFI.

Similar to the T2w versus T1w contrast-agnostic com-
parison using the HCP-YA data, it is interesting to observe 
that the MPM-PDw dataset showed the lowest quantita-
tive agreement with the reference, while at the same time 
being the contrast used for the validation dataset for 
SCAIFIELD data during training.

While being contrast agnostic is a great feature of 
GOUHFI (and SynthSeg), one inherent aspect of this is its 
strong generalization to T1w contrast variations. T1w 
contrast is considered the standard for high-resolution 
anatomical brain images, however, there is still a wide 
variety of implementations of T1w contrasts. Indeed, 
whether it is a difference rising from sequence selection 
(e.g., MPRAGE vs. MP2RAGE), choice of acquisition 
parameters (e.g., TI, TE and FA values), or even vendor 
implementations (e.g., Siemens’ MPRAGE vs. GE IR-
FSPGR), T1w can appear quite different across centers 
or neuroimaging studies. Therefore, as shown in Billot 
et al. (2023), DL segmentation techniques trained on spe-
cific T1w images showed poor generalization to other 
T1w contrasts, whereas contrast-agnostic techniques 
such as SynthSeg and GOUHFI performed remarkably 
well and even better in some cases. Essentially, even if 
not designed or optimized for T1w contrast, GOUHFI 
should still be considered as a robust and accurate seg-
mentation option for T1w datasets.

For the SCA-T1w, FastSurferVINN segmentations 
were still chosen as ground truth over SynthSeg (used for 
the three MPM contrasts). From ad hoc qualitative 
assessment of the segmentation quality, FastSurferVINN 
was deemed a superior segmentation technique over 
SynthSeg even if it was not designed for 7T and  

< (0.7 mm)3 images. Previous work (Fortin et  al., 2025) 
showed that FastSurferVINN performed quite well when 
N4-correction and pTx pulses were used. Indeed, as 
shown in Figure 3, the MPRAGE image does not exhibit 
the typical strong signal inhomogeneities observed at 7T, 
and the full cerebellum and temporal lobes were properly 
detected by FastSurferVINN. SynthSeg showed poor 
boundary detection between WM and cortex in highly 
gyrified regions (red arrows on sagittal view of Fig.  3) 
probably due to its low training resolution (+9 Dice points 
for the cortex label for GOUHFI compared with SynthSeg 
[0.91 vs. 0.82 respectively]). This was determinant in the 
decision to not pick SynthSeg as the ground truth for the 
SCA-T1w case. However, signs of limitations for Fast-
SurferVINN could be observed such as cortical voxels 
being mislabeled as WM in some cases, or a significant 
number of cerebellar WM branches not being detected 
(common issue with SynthSeg). It is also important to 
mention that the latter issue did not seem to be a 7T-spe-
cific issue as cerebellar WM branches appeared to be 
also difficult to segment at 3T for the T1w images from 
the HCP dataset (see Fig. 2).

Moreover, it is essential to highlight that even if the 
theoretical best DSC score achievable is 1, in this work, 
DSC scores between 0.85 and 0.90 were desired due to 
the use of a “silver standard” as ground truth. For most 
test cases tested in this work where FastSurferVINN was 
set as the reference, it must be highlighted that authors 
were fully aware that it was not expected to perform well 
outside the HCP and pTx SCAIFIELD test scenarios. For 
non-T1w contrasts, SynthSeg was the best and only  
DL contrast-agnostic technique available to compare 
GOUHFI with. However, its low training resolution applied 
to high-resolution images made it a questionable choice 
as a reference as discussed previously in this section. 
Thus, in the SCAIFIELD MPM case, the DSC and ASD 
scores reported against SynthSeg should not be inter-
preted as direct quantitative assessment of GOUHFI’s 
performance for UHF-MRI, but rather as a general indica-
tor of how it compared with SynthSeg. Ultimately, this 
further emphasizes the necessity for novel segmentation 
techniques to be developed for UHF-MRI.

In all cases tested in this work, GOUHFI demonstrated 
improved segmentation of cerebellar WM branches over 
FastSurferVINN and SynthSeg, even in cases such as 
HCP-T1w where both should be expected to be superior. 
This makes GOUHFI particularly interesting for neuroim-
aging studies where the cerebellum is of importance, like 
for spinocerebellar ataxias (Arruda et al., 2020; Ferreira 
et al., 2024), whether it is UHF-MRI or not.

Results displayed in Figure  4 showcased GOUHFI’s 
and SynthSeg’s capacity to segment highly inhomoge-
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neous UHF images, significantly better than FastSurfer-
VINN. Even in the cerebellum region with extremely low 
signal, GOUHFI was able to properly delineate the cere-
bellar GM and WM, whereas SynthSeg “over-segmented” 
the superior region of the cerebellar WM in a similar fash-
ion as for the MPM-T1w as previously discussed. Con-
versely, even for cortical regions in the parietal and frontal 
lobes affected by hyperintense signal, GOUHFI accu-
rately detected WM and GM voxels. SynthSeg showed 
limitations in properly delineating the fine cortical regions 
with frequent mislabeling resulting in overly segmenting 
non-cortical voxels as cortex. Overall, SynthSeg showed 
the same level of resistance to signal inhomogeneity  
as GOUHFI with most of its limitations probably due to 
the low training resolution. Since a substantial level of 
noise was present in the inferior part of the cerebellum,  
it was not clear where the actual border of the cere
bellum was. It is fair to say that SynthSeg proposed a  
more cautious estimate of it compared with GOUHFI. 
However, SynthSeg has repetitively shown signs of over-
cautiousness with these results (yellow arrows on Fig. 4) 
and with the MPI-CBS dataset too. Nonetheless, the best 
identification of the cerebellum GM between SynthSeg 
and GOUHFI is quite challenging to assess with certainty. 
Ultimately, the increased random signal bias imple-
mented in the generative model used by GOUHFI for the 
creation of synthetic training images did not seem to 
meaningfully modify the overall high inhomogeneity resis-
tance that was already present with SynthSeg’s genera-
tive model.

As a result, this resistance of GOUHFI to high levels of 
noise, granularity, and inhomogeneity is a direct outcome 
of the use of synthetic images for training. As shown with 
the example dataset in Figure  1, the synthetic images 
exhibited similar features to typical UHF images due to 
the randomly simulated noise and inhomogeneities gen-
erated in the images while the corresponding segmenta-
tions remained unaffected. This would not be possible if 
real images were used for training, since the segmenta-
tions would be directly affected by the noise and inhomo-
geneity levels present in the input images.

4.4.  Glasgow dataset: GOUHFI versus 
CEREBRUM-7T

Both GOUHFI and SynthSeg performed as well against 
CEREBRUM-7T and its iGT. Even if the quantitative met-
rics were slightly lower for GOUHFI and SynthSeg than 
for CEREBRUM-7T, we would like to argue that this might 
be the consequence of using the iGT as the ground truth. 
Indeed, suboptimal delineations were observable in the 
iGT segments as shown in Figure  5 with the yellow 
arrows. For instance, coarse delineations were present 

especially for small cortical regions or the basal ganglia. 
Moreover, CEREBRUM-7T falsely assigned voxels 
affected by partial volume effects at the border of ventri-
cles and WM as gray matter, which was also the case for 
the iGT but not GOUHFI nor SynthSeg. Moreover, the 
cerebellum segmentation in the iGT was noticeably poor.

Since CEREBRUM-7T is the only segmentation tech-
nique optimized for 7T images, one might argue that it 
should have been the preferred technique for comparison 
against GOUHFI in this study. However, two main reasons 
can explain why SynthSeg (or even FastSurferVINN) was 
preferred. First, CEREBRUM-7T only segments the brain 
into six labels. For instance, CEREBRUM-7T only gener-
ates one label for the basal ganglia. This considerably 
limits the usability of CEREBRUM-7T in neuroimaging 
studies where the individual subcortical nuclei such as 
the thalamus or putamen can be of interest (Rua et al., 
2020; Solomon et al., 2017). The same argument applies 
for the amygdala and hippocampus which were unusually 
combined with the rest of GM into one single label. Finally, 
the segmentation of the cerebellum as one label, which 
does not differentiate between cerebellar WM and GM, is 
also limiting. At 3T and UHF-MRI, these structures are 
even frequently segmented into smaller sub-nuclei for 
more precise analyses (Faber et  al., 2022; Haast et  al., 
2024; Keuken et  al., 2013; Morell-Ortega et  al., 2024; 
Plantinga et al., 2018). Considering that CEREBRUM-7T 
used FreeSurfer v6 to obtain individual subcortical nuclei 
segments to then recombine them under the basal gan-
glia as one single segment, it raises the question of why 
this unusual choice, especially for an UHF-MRI dedicated 
tool, was made.

The second issue related to CEREBRUM-7T was the 
technical prerequisites in order to use it. Out-of-the-box, 
CEREBRUM-7T can only segment images respecting 
these four requirements: (1) (0.63  mm)3 resolution, (2) 
MP2RAGE sequence, (3) matrix size of 256 × 352 × 224, 
and (4) images from the Glasgow dataset. Any divergence 
from one of these four requirements requires fine-tuning 
(Svanera et  al., 2021). For instance, as discussed in 
Henschel et  al. (2022), no de facto standard resolution 
exists for high-resolution images, and even less at UHF-
MRI, making the first requirement quite constraining in a 
similar fashion as it is for SynthSeg with only 1.0 mm3 out-
puts. While a fine-tuning process requires less time and 
data than a full DL training, the user still faces practical 
challenges similar to a full training (i.e., having access to 
considerable GPU hardware with a significant amount of 
data curation and preparation) in addition to the prerequi-
site of a few, already available, high-quality segmenta-
tions from their specific dataset. The latter can be 
interpreted as a circular dependency, where segmentations 
are actually required in order to produce segmentations. 
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Therefore, in this work, fine-tuning CEREBRUM-7T to 
every test dataset including 7T data was considered 
unfeasible due to the complexity of producing high-
quality segmentations for these datasets, which exceeded 
the realistic scope of this work. Moreover, implementing a 
segmentation technique with these requirements in a clin-
ical setting would be extremely challenging.

Ultimately, considering all practical challenges related 
to the usage of CEREBRUM-7T on unseen data and its 
modest number of labels segmented, using CERE-
BRUM-7T at UHF-MRI is considerably limiting and thus 
explains its absence for other test datasets in this work.

4.5.  MPI-CBS: GOUHFI and SynthSeg performance 
for ultra-high-resolution and inhomogeneous 7T 
images

Even when sequences such as MP2RAGE are used to 
reduce the impact of inhomogeneities with 1Tx at 7T, 
regions such as the cerebellum are frequently affected by 
poor contrast-to-noise ratios, as shown by Figure 6. Both 
SynthSeg and GOUHFI performed remarkably well to 
identify the full cerebellum, with actually a superior iden-
tification of the inferior border of the cerebellum by 
SynthSeg for subject 16. However, SynthSeg systemati-
cally and erroneously segmented subarachnoid spaces 
on both sides of the cerebellum as cerebellum GM for all 
subjects shown. Additionally, for subject 27, SynthSeg 
struggled to properly identify and delineate the cortex 
inside the temporal lobe for both hemispheres.

In the end, this test dataset demonstrated the clear 
limitation of inferring with a model that was trained with a 
lower resolution (1.0 mm3 or even lower considering the 
random down-sampling) in terms of properly segmenting 
fine gyrified cortex regions at ultra-high-resolution like 
(0.4  mm)3. That resulted in frequent mislabeling of the 
cortex with frequent poor overestimation of the extent of 
its actual localization (red arrows on Fig. 6).

4.6.  UltraCortex: Performance of GOUHFI and 
SynthSeg against manual white and gray matter 
delineations at 9.4T

Both GOUHFI and SynthSeg showed great accuracy 
when compared with manual WM and GM segmentations 
with DSC > 0.89 for all three sub-datasets from the Ultra-
Cortex 9.4T dataset. However, GOUHFI was consistently 
superior to SynthSeg across all sub-datasets, with 
marked superiority for the cortex segmentation with at 
least six points of improvement on the median DSC. As 
already discussed in previous sub-sections, this is 
another example of the limited capacity of SynthSeg to 
properly segment highly gyrified cortex regions compared 

with GOUHFI. However, this time, the ground truth is the 
gold standard with manual delineations, which gives even 
greater credibility to this observation. After extensive 
search, this dataset was found to be the only dataset with 
manual segmentations of complete ROIs available for 
sub-millimeter images acquired at UHF-MRI. It would 
have been highly interesting to evaluate GOUHFI against 
manually segmented subcortical structures at their native 
sub-millimeter resolution, but we were unable to find such 
dataset, presumably due to the extensive amount of time 
and expertise required to execute such a task.

4.7.  STRAT-PARK: Parkinson’s disease volumetry 
study at 7T

FastSurferVINN, GOUHFI, and SynthSeg were able to 
detect volumetric changes between HC and PDP as 
shown in Figure 7. The consistent decrease in volumes 
between HC and PDP is in agreement with the literature 
for these three ROIs (Geng et  al., 2006; Junqué et  al., 
2005; Pieperhoff et al., 2022).

However, one difference observed between Fast-
SurferVINN and both GOUHFI and SynthSeg was the 
larger median hippocampal volume computed for both 
HC and PDP compared with FastSurferVINN (middle plot 
in Fig. 7). Ad hoc qualitative observations of the segmen-
tation results indicated that, in certain subjects with 
substantially enlarged ventricles, GOUHFI tended to 
overestimate hippocampal volume by erroneously includ-
ing portions of the adjacent inferior lateral ventricle inside 
the hippocampal delineation. That was not observed for 
FastSurferVINN nor SynthSeg. Nonetheless, this hippo-
campal over-segmentation did not appear to impact the 
segmentation quality for the amygdala for GOUHFI. This 
highlights a potential limitation of the generative model 
used by GOUHFI, namely its inability to synthesize 
unhealthy brain anatomies where subtle anatomical devi-
ations from healthy brains can impact its performance. 
As for any automated segmentation technique, we rec-
ommend the users to visually inspect their segmentation 
results. Incorporating a more diverse training dataset 
with older subjects could possibly help mitigating this 
issue. Ultimately, further clinical validation and analyses 
on more diverse and aged clinical cohorts with different 
neurological conditions should be done for GOUHFI in 
the future, but is currently outside the scope of this work.

4.8.  Human Brain Atlas: Ultra-High Resolution at 7T

Reaching ultra-high-resolution levels like for the 
(0.25  mm)3 MP2RAGE images from the Human Brain 
Atlas dataset allows for the visualization of PVS. Indeed, 
PVSs in healthy subjects have diameters between 
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0.13  mm and 0.96  mm, with the majority being below 
0.5 mm (Zong et al., 2016). GOUHFI and SynthSeg did 
not segment any PVS (it was included in WM), whereas 
FastSurferVINN segmented most of them and labeled 
them as background or cortex. Whether PVS should be 
segmented as part of WM is subject to discussion. How-
ever, segmenting them as cortex is incorrect. Especially 
at UHF-MRI, researchers should start considering spe-
cific inclusion of PVS in label maps, in particular, as the 
number of studies about PVS has drastically increased in 
the recent years (Feldman et  al., 2018; George et  al., 
2021; Kilsdonk et al., 2015; Wardlaw et al., 2020).

The (0.25 mm)3 segmentations produced by GOUHFI 
showed great delineation of the structures despite the 
fact that this resolution was considerably outside the 
training resolution of (0.7 mm)3. Conversely, SynthSeg did 
not show the same level of delineation for the segmenta-
tions, even if the same up-sampling approach as GOUHFI 
was used. These results further demonstrated the clear 
improvement in delineation quality by using a higher 
training resolution for GOUHFI over SynthSeg. In Fig-
ure 8, one can observe the cortex segmentation created 
by SynthSeg, even if up-sampled to (0.25 mm)3, has jag-
ged contours and several regions of overextending the 
cortex into the bordering CSF (turquoise arrows). Both 
these behaviors were not observed for GOUHFI. The 
substantial difference in voxel volume between the out-
put resolution of SynthSeg and the input HBA image 
(64 times bigger voxels) made the jagged contours more 
apparent, although such artifacts were also present, 
albeit less visibly, at other sub-millimeter resolutions.

Indeed, GOUHFI (and SynthSeg) uses an “external 
scaling” (exSA) approach to deal with any resolution 
instead of the “internal scaling” (or VINN) approach as 
proposed in FastSurferVINN. While in Henschel et  al. 
(2022) the results were consistently better for the VINN 
approach over the exSA approach for all datasets shown 
in their figure 8 (and the corresponding Table 9), none of 
the datasets showed a significantly better performance 
statistically, with only minimal improvement of the mean 
values compared with the standard deviations. In fact, for 
the subcortical structures of the ADNI dataset, the DSC 
and ASD values reported in Table 9 were actually higher 
for exSA over the VINN approach, which is in disagree-
ment with the results reported in their figure 8. Overall, 
the differences reported between the exSA and VINN 
approaches were larger for cortical than subcortical 
structures (i.e., only two labels, left- and right-cortex, 
compared with the 33 other labels in this work).

One technical challenge of using the VINN technique 
(like FastSurferVINN) is the substantial increase in 
required GPU hardware to segment ultra-high resolu-
tions, like the (0.25 mm)3 used here, since the full matrix 

is fed to the network. For instance, the GPU hardware 
used in this work was not powerful enough to segment 
the (0.25  mm)3 images due to VRAM limitations. This 
resulted in the required usage of CPU resources to seg-
ment the (0.25 mm)3 images using FastSurferVINN, which 
increased computation time by a factor of 78. While this 
was not an issue for a single subject dataset, using the 
VINN approach might be limiting for the increased matrix 
size of images with ultra-high resolutions like the HBA 
case and is something to consider for larger datasets or 
researchers with limited access to GPU hardware.

4.9.  Impact of label granularity from 3T to UHF-MRI

As reported in Valabregue et  al. (2024), FreeSurfer and 
FastSurferVINN have been shown to erroneously include 
a substantial portion of the claustrum within the putamen 
segmentation. Since both SynthSeg and GOUHFI were 
trained using label maps produced by FreeSurfer and 
FastSurferVINN, respectively, the same pattern should 
have been expected especially due to the higher contrast 
at UHF. Surprisingly, as demonstrated in Figure  9, 
GOUHFI, while not being able to perfectly delineate the 
putamen, did not exhibit as poor delineations of the 
putamen as FastSurferVINN, and overall better than 
SynthSeg. Nevertheless, when tested on ultra-high reso-
lution and high T1w contrast like for the MPI-CBS and 
UltraCortex datasets, GOUHFI performed suboptimally in 
a similar fashion as SynthSeg. One additional related 
issue, specific to SynthSeg, is its poor delineation of the 
cerebral cortex which frequently resulted in the cortex 
and putamen being directly segmented next to each 
other (cf. yellow arrow on the HCP-YA example).

Moreover, an issue arising from using label maps 
defined at the 3T-granularity level is the absence of sub-
field distinction for some subcortical nuclei. Given that 
UHF-MRI offers increased resolution and contrast, this 
can become a problem for some structures such as the 
thalamus, hippocampus, or amygdala. Indeed, especially 
for the MPI-CBS and HBA cases with ultra-high resolu-
tion at 7T, different contrasts were visible and present 
inside the thalamus label. While this single thalamus label 
definition was adequate at 1.5 and 3T, this definition 
becomes limiting in some instances at 7T with ultra-high 
resolution and contrast as shown here.

Ultimately, the limitations observed for both the claus-
trum and thalamus in FastSurferVINN, SynthSeg, and 
GOUHFI underscore the need for label definitions 
adapted to the granularity of UHF images. This adapta-
tion, not widely implemented in large-scale automatic 
segmentation tools, will be essential in order to accu-
rately capture the sub-field nature of subcortical nuclei. 
Promising new tools such as NextBrain (Casamitjana 
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et al., 2024) could help implement updated label defini-
tions in the future for automatic UHF segmentation tech-
niques such as GOUHFI.

4.10.  Limitations

It is important to acknowledge certain limitations of our 
study, such as the limited availability of reference tech-
niques to compare GOUHFI with. As discussed in Sec-
tion 4.4, it would have been preferable if CEREBRUM-7T 
would have offered the same out-of-the-box implemen-
tation like FastSurferVINN or SynthSeg (albeit the extra 
external up-sampling step that had to be added by the 
authors in order to enable comparisons for SynthSeg). 
Additionally, it is worth repeating that CEREBRUM-7T 
produces only 6 labels, whereas GOUHFI produces 35 
(following FreeSurfer/FastSurferVINN label convention). 
This allows for a considerably larger number of regions to 
use for quantitative analyses with GOUHFI, which is 
especially of interest at UHF-MRI. Ultimately, this lack of 
reference segmentation techniques at UHF-MRI further 
manifests the need for novel techniques to be developed.

A common issue faced by all novel segmentation 
techniques is the sparsity of real ground truth segmenta-
tions to use for testing. In this work, manual segmenta-
tions were only available for the UltraCortex dataset and 
two labels only. For other quantitative analyses, either 
FastSurferVINN segments computed on T1w images or 
SynthSeg were used as a “silver standard” or, for CERE-
BRUM-7T, the iGT was used. To the best of our knowl-
edge, no dataset available online offers 3D sub-millimeter 
manual segmentations for several subcortical labels at 
UHF-MRI. Moreover, producing our own manual seg-
mentations would have been extremely time consuming 
and required expertise outside the scope of this work. In 
addition, manual segmentations are prone to inter- and 
intra-expert variability (Deeley et al., 2011).

Despite GOUHFI being able to segment any contrast 
and resolution tested, input images still need to be skull 
stripped unlike similar techniques (FastSurferVINN, 
SynthSeg, or CEREBRUM-7T). The reasons behind this 
requirement are that, first, some training data were 
already skull stripped when accessed, and second, seg-
menting extra-cerebral labels as in Billot et al. (2023) was 
not easily obtainable for UHF images due to signal inho-
mogeneities outside the brain. Extra-cerebral labels are 
required in order to generate synthetic contrasts for the 
whole head and such tools are not readily available for 
UHF images. In contrast, considering that skull stripping 
is a quite common step for neuroimaging pipelines, and 
that it has been extensively developed and improved 
recently with the arrival of DL-based techniques, we 
strongly believe that it should not limit the usability of 

GOUHFI in practice. Indeed, a wide variety of robust and 
extensively tested options are freely and easily available 
online such as BET, HD-BET, SynthStrip, ROBEX, 
ANTsPyNet, and MONSTR (Hoopes et al., 2022; Iglesias 
et  al., 2011; Isensee et  al., 2019; S. Roy et  al., 2017; 
Smith, 2002; Tustison et al., 2021). Nonetheless, possible 
errors in skull stripping can impact the quality of the seg-
mentation results and we recommend users to assess 
the skull stripping on their images before using GOUHFI 
and use a consistent procedure for a given image type.

A potential drawback of GOUHFI, designed for UHF-
MRI, is the fact that cortex parcellation is not performed. 
This can be a limitation for researchers using functional 
MRI (fMRI) at UHF where its advantages, compared with 
3T, have been shown Beisteiner et al. (2011). In addition, 
as previously mentioned, all training and most of the test 
data in this study consisted of MR images of young 
healthy subjects. While the volumetry results on PDP ver-
sus HC indicate that GOUHFI is comparable with Fast-
SurferVINN, they also pointed to some potential problems 
of GOUHFI related to enlarged lateral ventricles. A broad 
and systematic evaluation of the performance of GOUHFI 
in the presence of deviating anatomies and various 
pathologies was outside the scope of the current study, 
but should be done in a separate follow-up study. Such a 
study should also consider a retraining of GOUHFI with 
added data from patient studies in the training corpus. 
This could, for example, include open-access databases 
with neurological disorders such as the OASIS or ADNI 
databases (Jack Jr et  al., 2008; Marcus et  al., 2007). 
Originally excluded due to their lower resolutions (i.e., 
1 mm3), these datasets could offer anatomical variations, 
like enlarged ventricles, that can be impossible to synthe-
size with the generative model and, thus, improve the 
robustness of GOUHFI to a wider range of brain anato-
mies. Ultimately, addressing the limitations related to the 
cortex parcellation, lack of anatomical diversity in the 
training data, and thorough testing of GOUHFI on clinical 
cohorts with pathologies represents the main focus of 
future work.

5.  CONCLUSIONS

In summary, we propose GOUHFI, a novel DL-based 
segmentation technique capable of segmenting MR 
images acquired with various contrasts, resolutions, and 
even field strengths. GOUHFI was able to segment all six 
resolutions and seven contrasts tested in this work. The 
usage of synthetic images for training enabled the seg-
mentation of images acquired at 3T, 7T, and 9.4T. At 3T, 
when compared with FastSurferVINN, GOUHFI gave an 
average DSC of 0.89 for both T1w and T2w images, 
demonstrating great performance at lower field strengths 
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and superiority over SynthSeg, although developed for 
UHF applications. At 7T, GOUHFI was able to segment 
five different contrasts and showed similar performance 
to CEREBRUM-7T while being substantially more gener-
alizable and practical for the UHF-MRI context. At 9.4T, 
GOUHFI demonstrated high agreement with manual seg-
mentations with an average DSC of 0.93 over 12 subjects 
versus 0.89 for SynthSeg. Despite SynthSeg exhibiting 
decent performance at UHF with high inhomogeneity 
resistance, SynthSeg lacked the necessary granularity 
required at UHF in its output segmentations, likely due to 
the low training resolution. Ultimately, by being trained on 
synthetic images randomly generated from only sub-
millimeter label maps, GOUHFI was able to develop con-
trast- and resolution-agnostic capabilities adapted to the 
UHF-MRI reality with, in addition, a significant resistance 
to noise and signal inhomogeneities, which have been a 
major challenge for automatic segmentation at UHF-MRI 
until now. For this initial version of GOUHFI, the training 
and testing were predominantly conducted using data 
from healthy subjects. While this will be addressed in its 
next iteration, it is important to consider this factor when 
applying GOUHFI to patient cohorts.

DATA AND CODE AVAILABILITY
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tion 2 except for the SCAIFIELD and STRAT-PARK data-
sets. The latter are not publicly available due to data 
protection regulations.
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Appendix Table A.1.  Label name and index of all 
structures segmented by GOUHFI. Lh and rh stands for 
Left- and Right-Hemisphere, respectively.

Segmented structure Label index

Cerebral white matter (lh) 1
Cerebral cortex (lh) 2
Lateral ventricle (lh) 3
Inferior lateral ventricle (lh) 4
Cerebellar white matter (lh) 5
Cerebellar cortex (lh) 6
Thalamus (lh) 7
Caudate (lh) 8
Putamen (lh) 9
Pallidum (lh) 10
3rd-ventricle 11
4th-ventricle 12
Brain stem 13
Hippocampus (lh) 14
Amygdala (lh) 15
CSF 16
Accumbens (lh) 17
Ventral DC (lh) 18
Choroid plexus (lh) 19
Cerebral white matter (rh) 20
Cerebral cortex (rh) 21
Lateral ventricle (rh) 22
Inferior lateral ventricle (rh) 23
Cerebellar white matter (rh) 24
Cerebellar cortex (rh) 25
Thalamus (rh) 26
Caudate (rh) 27
Putamen (rh) 28
Pallidum (rh) 29
Hippocampus (rh) 30
Amygdala (rh) 31
Accumbens (rh) 32
Ventral DC (rh) 33
Choroid plexus (rh) 34
WM-hypointensities 35
Extra-cerebral 36*

*While required to generate the synthetic images used for training, 
the extra-cerebral label is not segmented by GOUHFI.

Appendix Table A.2.  Values of the parameters used in 
this study for the generative model.

Parameter Value

a rot -20
b rot 20
a sc 0.8
b sc 1.2
a sh -0.015
b sh 0.015
a tr -30
b tr 30
bnonlin 4.0
aµ 0
bµ 255
aσ 0
bσ 35
bB 0.9
σγ

2 0.4
rHR None
b res None
aα None
bα None

Intensity parameters assume inputs in the [0, 255] interval, 
rotations are expressed in degrees with spatial measures in 
millimeters. More details about these parameters are provided in 
Billot et al. (2023).
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APPENDIX A.3. FREESURFER VERSUS  
FASTSURFERVINN LABEL MAPS FOR  
(0.7 MM)3 3T MPRAGE IMAGES

Appendix Fig. A.1.  Comparison in the three anatomical planes of the output label maps produced by FreeSurfer 
(middle column) and FastSurferVINN (right column) for the same 3T (0.7 mm)3 T1w MPRAGE. Despite both label maps 
being at the same resolution of (0.7 mm)3, a difference in delineation quality is easily observable between FreeSurfer and 
FastSurferVINN, with the latter producing more refined delineations of anatomical structures. Therefore, FastSurferVINN 
was preferred for the training label maps for GOUHFI.


