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ABSTRACT

Recently, ultra-high-field MRI (UHF-MRI) has become more available and one of the best tools to study the brain for
neuroscientists. One common step in quantitative neuroimaging is to segment the brain into several regions, which
has been done using software packages such as FreeSurfer, FastSurferVINN, or SynthSeg. However, the differences
between UHF-MRI and 1.5T or 3T images are such that the automatic segmentation techniques optimized at these
field strengths usually produce unsatisfactory segmentation results for UHF images. Thus, it has been particularly
challenging to perform region-based quantitative analyses as typically done with 1.5-3T data, considerably limiting
the potential of UHF-MRI until now. Ultimately, this underscores the crucial need for developing new automatic seg-
mentation techniques designed to handle UHF images. Hence, we propose a novel Deep Learning (DL)-based seg-
mentation technique called GOUHFI: Generalized and Optimized segmentation tool for ultra-high-field images,
designed to segment UHF images of various contrasts and resolutions. For training, we used a total of 206 label maps
from four datasets acquired at 3T, 7T, and 9.4T. In contrast to most DL strategies, we used a previously proposed
domain randomization approach, where synthetic images generated from the 206 label maps were used for training
a 3D U-Net. This approach enables the DL model to become contrast agnostic. GOUHFI was tested on seven differ-
ent datasets and compared with existing techniques such as FastSurferVINN, SynthSeg, and CEREBRUM-7T.
GOUHFI was able to segment the six contrasts and seven resolutions tested at 3T, 7T, and 9.4T. Average Dice-
Serensen Similarity Coefficient (DSC) scores of 0.90, 0.90, and 0.93 were computed against the ground truth segmen-
tations at 3T, 7T, and 9.4T, respectively. These results demonstrated GOUHFI’s superior performance to competing
approaches at each resolution and contrast level tested. Moreover, GOUHFI demonstrated impressive resistance to
the typical inhomogeneities observed at UHF-MRI, making it a new powerful segmentation tool allowing the usual
quantitative analysis pipelines performed at lower fields to be applied also at UHF. Ultimately, GOUHFI is a promising
new segmentation tool, being the first of its kind proposing a contrast- and resolution-agnostic alternative for UHF-
MRI without requiring fine tuning or retraining, making it the forthcoming alternative for neuroscientists working with
UHF-MRI or even lower field strengths.
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1. INTRODUCTION

One of the most important steps in quantitative neuroim-
aging pipelines is the segmentation of the brain into its
different regions. Segmentation can be used to identify
specific brain regions for cognitive disease diagnosis, to
perform quantitative analyses like relaxometry or volum-
etry, and to help with surgical planning or image-guided
interventions (Despotovi¢ et al., 2015; Gonzalez-Villa
et al., 2016; Klinger et al., 2024; Singh & Singh, 2021).
Due to the considerable amount of time and expertise
required to produce manual segmentations for many
regions and subjects, automatic methods have been
developed. Historically, atlas- and Bayesian-based tech-
niques have been proposed, such as MABMIS and Free-
Surfer or FSL-FIRST, respectively (Fischl et al., 2002; Jia
et al., 2012; Patenaude et al., 2011). All propose to auto-
matically segment the whole brain into several cortical
and subcortical labels. However, with the developments
in graphical processing units (GPU) in the last decade,
Deep Learning (DL) has drastically changed the land-
scape of automatic brain segmentation. Whereas regular
machine learning (ML) approaches have shown limited
ability to generalize and adapt to complex imaging
modalities, convolutional neural networks (CNN) used for
DL models have become increasingly successful in han-
dling these challenges (Singh & Singh, 2021). More pre-
cisely, the U-Net architecture proposed by Ronneberger
et al. (2015) has shown remarkable performance for brain
segmentation tasks. Due to its symmetrical encoder-
decoder structure with skip connections, creating a
U-shaped architecture, the U-Net is able to efficiently
extract features at different scales in the images. Recently,
several techniques using the U-Net architecture have
been proposed such as AssemblyNet (Coupé et al.,
2020), QuickNat (A. G. Roy et al., 2019), SLANT27 (Huo
et al., 2019), FastSurferCNN (Henschel et al., 2020), and
FastSurferVINN (Henschel et al., 2022), which allow the
segmentation of the brain into more than 25 labels.

Most of the DL-based brain segmentation techniques,
including all of the aforementioned ones, rely on the typ-
ical paradigm of using a T1w input image with its corre-
sponding segmentation/label map as training data. In
order to improve the network capacity to generalize to
unseen T1w images and increase the training corpus
size, extensive data augmentation (DA) is applied on the
training data. However, generalization to unseen con-
trasts and resolutions has shown limitations where seg-
mentation performance quickly decreases when used on
images outside the training domain (Ghafoorian et al.,
2017; Karani et al., 2018). This limitation is known as the
“domain gap” problem (Pan & Yang, 2009). While this
issue can be partially addressed by having multi-modality

training data or test-time domain adaptation methods
(Havaei et al., 2016; Karani et al., 2021), the network will
still struggle when encountering completely unseen
images. Alternatively, fine-tuning these models to new
contrasts has shown great results. Ultimately, since this
fine-tuning is required for every new contrast, this quickly
becomes limiting in practice and not an “out-of-the-box”
solution.

Historically, contrast invariance for brain MRI segmen-
tation has been successfully achieved through Bayesian
segmentation (Van Leemput et al., 1999). However, this
approach requires considerably more computational time
than DL-based techniques. The fastest Bayesian tech-
niques can process one subject in ~15 minutes (Puonti
et al., 2016), whereas DL-based techniques require less
than 1 minute. Consequently, contrast-invariant Bayesian
segmentation techniques have been extremely challeng-
ing to implement in clinical settings.

Thus, a novel paradigm for DL training data where ran-
domly generated synthetic images are used instead of
real images has emerged. This approach is called domain
randomization (DR) and was proposed for brain segmen-
tation for the first time by Billot et al. (2023). More pre-
cisely, synthetic images are generated directly from label
maps, using a fully randomized generative model creat-
ing images with random contrasts and augmentations
that are far beyond what is actually realistic. In Billot et al.
(2023), a novel segmentation tool, SynthSeg, was pro-
posed where this DR approach was combined with a 3D
U-Net in order to segment MR brain images. SynthSeg
demonstrated remarkable generalization to unseen con-
trasts and images with low signal-to-noise ratio (SNR)
without the need for fine-tuning or retraining. Moreover,
SynthSeg outperformed the state-of-the-art Bayesian
approach SAMSEG (Puonti et al., 2016) in all tested data-
sets, in addition to being substantially faster. As a result,
the approach proposed by SynthSeg has recently been
used for other applications such as segmentation of
white matter (WM) lesions or neonatal brain (Gibson
et al., 2024; Valabregue et al., 2024), and is widely avail-
able through the FreeSurfer package and distributed with
MATLAB (from R2022b and onward).

While both paradigms (real images + DA vs. synthetic
images + DR) have been used for many different applica-
tions, none of them have been applied to UHF-MRI (i.e.,
>7T). UHF-MRI accessibility has increased in the last
decade and has even been used for large neuroimaging
studies such as the Human Connectome Project (HCP)
due to its higher SNR, contrast, and spatial resolution
(Trattnig et al., 2018). Despite the several advantages of
UHF-MRI, UHF images typically suffer from significant
transmit radiofrequency (RF) inhomogeneities compared
with lower field strengths, due to the shorter RF
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wavelength (Schick, 2005). This results in significant sig-
nal and contrast inhomogeneities observed across the
image (Webb & Collins, 2010). Although recent develop-
ments in parallel transmit (pTx) RF pulses have substan-
tially improved both signal and contrast homogeneity
compared with single transmit (1Tx) pulses (Gras et al.,
2017), pTx pulses are not widely available and have yet to
be applied in large neuroimaging studies.

This inaccessibility to large datasets with homoge-
neous UHF images has considerably hindered the devel-
opment of typical DL-based techniques from Tiw
images. Only one technique, CEREBRUM-7T, has been
especially designed to segment 7T Tiw MP2RAGE
images (Svanera et al., 2021). Without retraining or fine-
tuning, CEREBRUM-7T can segment (0.63 mm)® T1w
MP2RAGE from the Glasgow dataset with a matrix shape
of 256 x 352 x 224 into six labels: white matter (WM),
gray matter (GM), ventricles, basal ganglia, cerebellum,
and brainstem. Alternatively, considering the limited
access to UHF-designed segmentation techniques, sev-
eral studies have been compelled to use 3T-designed
tools such as FreeSurfer on 7T data by implementing
extensive preprocessing on the images (Zaretskaya et al.,
2018). Additionally, FastSurferVINN, which proposes a
solution for sub-millimeter T1w images at 3T, has also
been recently tested at 7T with pTx T1w images and has
shown promising results (Cabalo et al., 2025; Fortin et al.,
2025). Ultimately, while tools designed at 3T can be a
solution for specific UHF T1w images acquired with pTx,
they do not provide a reliable solution for most UHF data.
Indeed, when both signal and contrast inhomogeneities
and resolution differences with 3T are combined, seg-
mentation results are frequently unsatisfactory, requiring
important visual quality assurance (QA) and even
extremely time-consuming manual corrections.

Thus, considering the recent increased accessibility of
UHF-MRI, there is an urgent need for developing novel
automatic segmentation techniques able to address the

new issues introduced with UHF-MRI. To the best of our
knowledge, no DL technique currently exists to segment
(1) T1w UHF images in more than six labels, (2) highly
inhomogeneous 1Tx UHF images, or (3) non-T1w con-
trast UHF images.

In this work, we propose GOUHFI: Generalized and
Optimized segmentation tool for ultra-high-field images.
By adapting the DR approach proposed in Billot et al.
(2023) to the UHF-MRI context and using a state-of-the-
art DL architecture with an extensive training corpus,
GOUHFI is able to segment UHF images of various con-
trasts and resolutions in clinically feasible times without
fine-tuning or retraining. More precisely, we present in
detail how GOUHFI was developed and trained, in addi-
tion to present its in-depth quantitative and qualitative
evaluation against two other segmentation techniques at
3T and 7T. Furthermore, GOUHFI’s performance against
manual delineations at 9.4T and clinical relevance in vol-
umetry measurements between Parkinson’s disease
patients and healthy controls was evaluated.

2. METHODS

2.1. Datasets

After conducting a comprehensive review of all sub-
millimeter MRI datasets freely available online, the eight
following datasets were selected for training and testing
GOUHFI. An overview of all these datasets is available in
Table 1.

2.1.1. Human Connectome Project: Young Adult

The Human Connectome Project Young Adult (HCP-YA)
(Van Essen et al., 2012) is a large neuroimaging study
including structural and functional MR images obtained
at 3T and 7T on healthy participants between the ages of
22 and 35 years. For GOUHFI, a subset of 100 randomly

Table 1. Summary of the datasets used for training and/or testing in this work.

Dataset Field Strength  Resolution Contrast Subjects Vendor  Use N

HCP-YA 3T (0.7 mm)3 Tiw/T2w Healthy Siemens Tr  80/20

SCAIFIELD 7T (pTx) (0.6 mm)3 T1iw, MPM-T1w, Healthy Siemens Tr/Ts 31/10

-MTw,-PDw

UltraCortex 9.4T (1Tx) (0.6 mm)¥/ Tiw Healthy Siemens Tr/Ts 15/12
(0.8 mm)?

ABIDE-Il ETHZ 3T (0.9 mm)3 Tiw ASD Philips T 34

ABIDE-Il EMC 3T (0.9 mm)? Tiw ASD GE Tr 46

MPI-CBS 7T (1Tx) (0.4 mm)3 Tiw Healthy Siemens Ts 28

STRAT-PARK 7T (1Tx) (0.75 mm)? Tiw PDP/Healthy Siemens Ts 45

CEREBRUM-7T 7T (1Tx) (0.63 mm)? Tiw Healthy Siemens Ts 21

Human Brain Atlas 7T (1Tx) (0.25 mm)? Tiw Healthy Siemens Ts 1

The table lists the field strength, resolution, contrast, subject type, vendor, usage, and number of subjects for each dataset. ASD: autism
spectrum disorder, PDP: Parkinson’s disease patients, Tr: training, Ts: test.

3
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selected subjects with preprocessed structural (0.7 mm)?
T1w MPRAGE and T2w SPACE images acquired at 3T
were used. The preprocessing steps included gradient
distortion correction, coregistration, and averaging of
both T1w and T2w runs individually (each sequence is
acquired twice per session), Anterior Commissure-
Posterior Commissure (ACPC) registration, brain
extraction, field map distortion correction, coregistration
of T2w to the T1w, and a bias field correction. More
details on the acquisition parameters of both MPRAGE
and SPACE sequences and preprocessing steps can be
found online.” The complete dataset is freely available
online.™ In this work, 80 subjects were used for training
and 20 for testing.

2.1.2. SpinoCerebellar Ataxias: Advanced Imaging
with ultra-high-FIELD MRI

The SpinoCerebellar Ataxias: advanced imaging with
ultra-high-FIELD MRI (SCAIFIELD) is a project aiming at
establishing quantitative UHF-MRI biomarkers for poly-
glutamine SCAs.* For this purpose, a multi-center study
has been conducted on 41 healthy participants with data
acquired on two 7T MAGNETOM Terra and one 7TPlus
MAGNETOM scanners (Siemens Healthineers, Erlangen,
Germany) with the same 8Tx/32Rx head coil model in
pTx mode. All sequences were acquired using Universal
pTx RF Pulses (UP) (Gras et al., 2017) created from a
database of B and B] maps acquired at each partner
site. The imaging protocol included acquisition of a Multi-
Parameter-Mapping (MPM) dataset consisting of Magne-
tization Transfer-, T1- and Proton Density-weighted
multi-echo spoiled gradient echo contrasts, and a T1w
MPRAGE, all at (0.6 mm)® resolution. For this study, 31
subjects were used for training and 10 for testing. The
first echo time images of the MPM images were also
used for testing (denoted MPM-MTw, MPM-T1w, and
MPM-PDw).

2.1.3. UltraCortex

The UltraCortex (Mahler et al., 2025) is a collaborative
project between the Max Planck Institute for biological
Cybernetics’ High-Field Magnetic Resonance and Uni-
versity Hospital Tubingen’s Biomedical Magnetic Reso-
nance Departments providing MR images acquired at
9.4T on 78 healthy adult volunteers (M/F: 50/28, age
range: 20-53 years old). In total, 86 examinations were
performed with either the MPRAGE (n = 18) or MP2RAGE

" https://www.humanconnectome.org/storage/app/media/documentation
/s1200/HCP_S1200_Release_Reference_Manual.pdf

t https://www.humanconnectome.org/study/hcp-young-adult

¥ https://www.dzne.de/en/research/projects/scaifield/about/

(n = 68) sequence with sub-millimeter resolutions of
(0.6 mm)3, (0.7 mm)3, and (0.8 mm)®, depending on the
subject.’ The images were acquired on a 9.4T whole-
body MRI scanner (Siemens Healthineers, Erlangen, Ger-
many) with a 16-channel dual-row transmit array
operating in CP+ mode paired with a 31-channel receive
array. For MP2RAGE, the images were B} corrected and
the background noise was removed using the regulariza-
tion approach proposed in O’Brien et al. (2014). All
images were skull stripped using SynthStrip (Hoopes
et al., 2022). Additionally, a set of manual segmentations
for WM and GM is provided for 12 subjects which was
used as a test dataset for this study (n = 8 (0.6 mm)3
MP2RAGE, n =1 (0.8 mm)® MP2RAGE and n = 3 (0.6 mm)?
MPRAGE). These manual labels were first produced by
FreeSurfer, manually corrected by student assistants and
then validated by two expert neuroradiologists. More
details on the data acquisition and processing can be
accessed in Mahler et al. (2025).

2.1.4. Autism Brain Imaging Data Exchange
(ABIDE) I1I

The Autism Brain Imaging Data Exchange (ABIDE) Il (Di
Martino et al., 2017) is a large 3T dataset containing 1114
subjects across 19 institutions with different autism spec-
trum disorders freely available online”. In this work, two
sub-cohorts using T1w images at (0.9 mm)?® resolutions
were used. The first one, named ETHZ, included 34 sub-
jects acquired with a 3T Philips Achieva scanner (Philips
Healthcare, Best, Netherlands) at ETH Zurich. The sec-
ond sub-cohort, EMC, acquired 46 subjects with a 3T GE
MRI scanner (General Electric Discovery MR750, Milwau-
kee, MI, USA) at the Erasmus University Medical Center
in Rotterdam. More details about the scanning procedure
and parameters can be obtained by following the link
provided above. All images from both sub-cohorts were
used for training.

2.1.5. Max Planck Institute for Human Cognitive
Brain Sciences

The Open Science CBS Neuroimaging Repository is a
dataset repository containing high-resolution and quan-
titative MRI data acquired at 7T, with single-transmit
channel, at the Max Planck Institute for Human Cogni-
tive Brain Sciences (MPI-CBS) in Leipzig (Tardif et al.,
2016). The dataset includes 28 MP2RAGE images
acquired on healthy subjects (M/F: 13/15, age: 26 = 4
years old) at (0.5 mm)?3 but reconstructed at a resolution

§ https://www.ultracortex.org/
™ http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
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of (0.4 mm)3. All shared images have previously been
skull stripped.

2.1.6. STRAT-PARK

The START-PARK cohort (Stige et al., 2024) is a large
ongoing initiative trying to stratify Parkinson’s disease
(PD) using a multi-disciplinary and multi-center longitudi-
nal cohort composed of PD and neurologically healthy
control individuals from Norway and Canada. One branch
of STRAT-PARK proposes to use 7T MRI to stratify PD
individuals using a high-resolution, multi-contrast, and
quantitative protocol including both anatomical and func-
tional images. As part of the imaging protocol, a (0.75 mm)?
MP2RAGE was acquired with a 7T MAGNETOM Terra
scanner (Siemens Healthineers, Erlangen, Germany) using
1Tx channel. The MP2RAGE has been skull stripped in
previous work done locally. For this project, a total of 45
subjects were used for testing with 24 PD patients (PDP)
(M/F:13/11, age: 66 + 7 years old) and 21 healthy controls
(HC) (M/F: 10/11, age: 60 * 9 years old).

2.1.7. CEREBRUM-T7T: Glasgow dataset

As part of the work presented in Svanera et al. (2021), the
test dataset used to assess CEREBRUM-7T’s perfor-
mance composed of 21 scanning sessions (11 subjects)
acquired with a Siemens 7T Terra MAGNETOM scanner
at the Queen Elizabeth University Hospital (Glasgow, UK)
was made available online.”™ Each session contains a
(0.63 mm)® 1Tx T1w MP2RAGE and the automatic seg-
mentations computed by CEREBRUM-7T. All 21 exam-
inations were used for testing GOUHFI against
CEREBRUM-TT.

2.1.8. Human Brain Atlas

The Human Brain Atlas (HBA) is an initiative from Schira
et al. (2023) with the goal of creating an in vivo atlas of the
human brain at (0.25 mm)? resolution from 7T MR images.
In order to do so, they have reconstructed a (0.25 mm)®
Tiw MP2RAGE from 11 individual (0.4 mm)® 1Tx T1w
MP2RAGE scans from the same subject. This single sub-
ject, ultra-high resolution reconstructed MP2RAGE was
used for testing GOUHFI. More details about the initiative
and the data can be found online.#

Each study was approved by the local review boards
of each site/institution and participants of the individual
studies signed a written informed consent form before

Tt https://search.kg.ebrains.eu/instances/Dataset/2b24466d-f1cd-4b66
-afa8-d70a6755ebea
#t https://osf.io/ckh5t/

scanning. Complete ethic statements are available at
each respective study web pages and publications.

2.2. Data processing

2.2.1. Original label map production

All T1w images used in this study were segmented using
FastSurferVINN (Henschel et al., 2022) (v2.3.0) with the
—-seg_only flag in order to produce automatic whole brain
segmentations into 35 structures/labels. The list of labels
produced by FastSurferVINN and used in this work,
which follows the standard FreeSurfer lookup table con-
vention (Fischl et al., 2002), is available in Appendix A.1.
Since the T1w images from the SCAIFIELD and Ultra-
Cortex dataset have been acquired at UHF-MRI and were
used for training in this study, extensive visual quality
assurance (QA) has been conducted on all label maps
produced by FastSurferVINN. For SCAIFIELD, the pTx
MPRAGE images were N4-corrected (Tustison et al.,
2010) before being segmented. For both datasets, sub-
jects where low segmentation quality due to motion or
important signal inhomogeneities was detected were
excluded from the training dataset. For UltraCortex, only
15 of the 78 subjects with (0.8 mm)®> MP2RAGE images
were assessed good enough to be used for training.

2.2.2. Creation of new label maps and
skull-stripped images

Skull stripping is a frequent preprocessing step done in
most neuroimaging studies. However, non-brain tissues
can remain since the skull-stripping quality is highly depen-
dent on many factors such as MR scanners, sequences
used, and image quality (Kleesiek et al., 2016; Pei et al.,
2022). In order to simulate a low-quality skull-stripping
procedure, new label maps with an “extra-cerebral” label
were created from the original label maps produced by
FastSurferVINN. First, morphological operations were
applied on the brain mask generated by FastSurferVINN.
Binary closing was applied to remove possible holes in the
mask and dilation was then applied on the filled mask. The
number of voxels used for dilation was four (UltraCortex
and ABIDE-II) or five (HCP and SCAIFIELD) depending on
the resolution of the label maps. These two steps were
executed to correct in case of too stringent brain masking.
This new mask was then used together with the original
mask to create the new extra-cerebral label by assigning
all voxels mutually exclusive to the new mask as this new
extra-cerebral label (i.e., voxels present in the new mask
but not in the original one). Then, the new label map was
created by assigning this new label value to the corre-
sponding voxel position in its original label map.
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Once the new mask was created, the corresponding
input T1w image from which the label map was created
was masked to create a skull-stripped version. For multi-
contrast datasets such as the HCP and SCAIFIELD, all
contrasts were coregistered before applying the mask-
ing. The rationale of using skull-stripped training data
was based on (1) the fact that some of the datasets were
directly shared as skull-stripped data, (2) the inaccessi-
bility to the whole-head segmentation algorithm used in
SynthSeg, and (3) the lack of signal outside the brain for
UHF-MRI data, making intensity-based whole-head seg-
mentation substantially harder than at 3T.

2.3. Generation of synthetic training images

As described in Section 1, the core concept behind
SynthSeg is the creation of a training dataset composed
solely of synthetic images randomly generated from label
maps, regardless of whether they were generated auto-
matically or manually (Billot et al., 2023). In order to cre-
ate synthetic images, the generative model uses fully
randomized parameters from predefined priors, generat-
ing images with random (and unrealistic) contrasts, mor-
phologies, artifacts, and noise levels. For an exhaustive
explanation behind the generative model developed in
SynthSeg, we recommend the reader to consult Billot
et al. (2023), since the focus of this section is toward vari-
ations from the original model.

FastSurferVINN
label map

Input Tdw image

Fig. 1.

New label map
with extra label

In this work, the generative model used in SynthSeg
was adapted for UHF images. More precisely, the param-
eter simulating bias field in the synthetic images was
increased from 0.6 to 0.9 to simulate the large signal
inhomogeneities frequently observed at UHF, and all
parameters related to the randomized downsampling of
the synthetic images were disabled to allow the creation
of synthetic images at native sub-millimeter resolution.
Unlike the original generative model implemented in
SynthSeg, in which these structures were excluded, the
choroid plexus (both hemispheres), cerebrospinal fluid
(CSF), and WM hypointensities labels were incorporated
into the generation of synthetic images. The extra-cerebral
label was also included in the generative model to syn-
thesize the images, but was excluded from the final label
maps. The rest of the generative model was kept as orig-
inally proposed and one synthetic image was generated
per training label map. An example case is shown in
Figure 1, and the parameters of the generative model
used in this study are provided in Appendix A.2.

2.4. Deep Learning model

2.4.1. Training data

The training dataset used was composed of 206 different
subjects from the HCP (n = 80), SCAIFIELD (n = 31),
UltraCortex (n = 15), and ABIDE-II (n = 80) datasets with
80% of the subjects randomly assigned as training with

Randomly deformed
label map

Randomly synthetized
images

Pipeline used to create the training data for GOUHFI. To produce the training data, the sub-millimeter T1w image

was used as input to FastSurferVINN in order to create a label map of the whole brain with 35 labels. A new label map
was then created by modifying the FastSurferVINN output by adding an extra-cerebral label based on the morphologically
modified brain mask (dark gray area surrounding the cerebral cortex on the third sub-figure). This new label map was then
used as input to the modified generative model from SynthSeg to create the randomly deformed version of it. Then, the
augmented label map was used to generate the synthetic image where, as explained in Billot et al. (2023), a mean and
standard deviation are randomly sampled from a normal distribution to generate a noisy signal for each label iteratively.
Ultimately, the extra-cerebral label was kept for generating the synthetic images but excluded from the final label map

in order to simulate signal surrounding the cortex such as CSF or remaining non-brain tissues from low-quality skull
stripping. Finally, the generated synthetic image with its corresponding deformed label map (from which it was generated)

was used as the training data (green box).
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the remaining 20% as validation using 5-fold cross-
validation. One aspect to achieve contrast agnosticity is
the use of real MR images of different contrasts for the
validation set, while the synthetic images are used for
training only. In other words, if one subject was assigned
to the validation set, the input T1w image and corre-
sponding label map were used and not the synthetic
image produced by the generative model. Consequently,
for the UltraCortex and ABIDE-Il datasets, the T1w
images with their corresponding label maps were used
for validation, whereas for the HCP and SCAIFIELD, the
T2w and PDw images were used, respectively, (both
coregistered to their corresponding T1w image used for
the label map creation).

2.4.2. Network architecture

In this work, the nnUNet framework (v2.4.1) with residual
encoder (Isensee et al., 2021, 2024) was used to imple-
ment the DL model. The “3D U-Net full image resolution”
with “Large Presets” was selected as the configuration,
considering the isotropic and sub-millimeter nature of the
training data and hardware limitations. More precisely, a
3D U-Net composed of 6 layers with 32, 64, 128, 256,
320, and 320 features, using Leaky ReLU (Maas et al.,
2013), 3 x 3 x 3 kernel size for convolutions, with a patch
size of 192 x 192 x 160 and a batch size of 2 was used.
The loss function was the sum of the Dice and cross-
entropy losses (Drozdzal et al., 2016).

The data augmentation step performed by default by
the nnUNet was disabled, since extensive data augmen-
tation was already applied by the DR approach used in
the generation step of the synthetic images. Since the
training dataset was composed of several resolutions, the
median resolution of the training dataset ((0.7 mm)?) was
used as the training resolution for the network. Conse-
quently, images and label maps at different resolutions
were externally up- or down-sampled to the median res-
olution before being fed to the network. For images, 3D
cubic spline interpolation was used, whereas 3D linear
interpolation with one-hot encoding was used for label
maps.

The complete description of all steps performed by
the nnUNet framework can be found in Isensee et al.
(2021).

2.4.3. Training setup

The model was trained for a total of 500 epochs for each
fold, where 1 epoch was defined as 250 random mini-
batches fed to the network. The AdamW optimizer
(Loshchilov, 2017) was utilized with a base learning rate
(LR) of 3 x 104, decaying following the poly LR scheduler.

The total training time was 6 days (1.2 days/fold) using an
NVIDIA Ampere A40 GPU with 48 Gb of VRAM.

2.4.4. Inference

Since 5-fold cross-validation was used (i.e., five sepa-
rate models were trained), an ensembling strategy,
where the softmax outputs (i.e., probability for each
label) from all models are averaged together, was used
to produce a single output label map at inference. More-
over, after training all five models, the default post-
processing step proposed by nnUNet of keeping only
the largest component for each label was tested with
the validation dataset. For all labels, the average Dice
score was computed with only the largest component
compared with the value with all components for that
label. Then, if the average Dice score was improved, the
post-processing step would be executed for this label
on any data to be inferred. For GOUHFI, this step was
applied to all 35 labels except the Left- and Right-
Inferior-Lateral-Ventricles.

Since GOUHFI was trained with segmentations pro-
duced from FastSurferVINN, and U-Nets are sensitive to
spatial localization, all data needed to be reoriented to
the Left-Inferior-Anterior (LIA) orientation before being
inferred. Moreover, the data to be inferred needed to be
resampled to the training resolution of (0.7 mm)® before
being processed by the network. The data were then res-
ampled back to native resolution after being segmented.
Inference, up/downsampling (if using a different resolu-
tion from the one used for training) and post-processing
took approximately 60 seconds per 3D volume/image. All
these steps are implemented in GOUHFI and all results
shown in this work were computed with GOUHFI version
1.1.0 available at https://github.com/mafortin/GOUHFI
/releases/tag/1.1.0.

2.5. Evaluation metrics

2.5.1. Quantitative evaluation

In order to assess the quality of the segmentations pro-
duced by GOUHFI, the Dice-Sgrensen Similarity Coeffi-
cient (DSC) (Dice, 1945; Sorensen, 1948), which measures
the overlap between two segments (with a value of 1
being a perfect overlap between the two segments), was
computed with the following equation:

2x|GUP|

DSC = :
G+P

)

where G is the ground truth segment, and P is the pre-
dicted segment to be compared.
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Moreover, the Average Surface Distance (ASD) (Reinke
et al.,, 2024), where a value of O represents a perfect
alignment of both surfaces evaluated, was computed
with the following equation:

Ng Np
ASD _ Zi=1dG~>P,i + 2,‘=1dF’~>G,i . (2)
N, +N,
Herein, d is the distance from point i on the sur-

G-oP,i
face of the ground truth segment to its nearest point on

the surface of the predicted segment; d,_; is the dis-
tance from point j on the surface of the predicted seg-
ment to its nearest point on the surface of the ground
truth segment; N, and N, are the total number of points
on the ground truth and predicted surfaces, respectively.

Except for the UltraCortex dataset where manual seg-
ments were available and the Glasgow dataset where the
“inaccurate ground truth” (iGT) was used, the ground truth
segmentations in this work were obtained by running
FastSurferVINN on the sub-millimeter T1w images for the
HCP-YA and the SCA-T1w test datasets. For SCA-MPM
contrasts, SynthSeg was used as the ground truth. Thus,
in these specific cases, the ground truth was considered a
“silver standard” and a perfect DSC of 1.0 was not neces-
sarily desired, especially in cases where FastSurferVINN
was prone to face difficulties (e.g., > 3T or < (0.7 mm)3
resolution). Nevertheless, FastSurferVINN has previously
shown robustness to resolutions < (0.7 mm)® and pTx
UHF-MRI data (Fortin et al., 2025). Both FastSurferVINN
and SynthSeg are also the only “out-of-the-box” solutions
to quantitatively evaluate GOUHFI against in most cases
since CEREBRUM-7T requires retraining outside its train-
ing domain for every test dataset, and that producing
manual delineations for 35 labels for many subjects was
outside the scope of this work. For CEREBRUM-T7T, the
iGT was created by a combination of FreeSurfer, AFNI3d-
Seg (Cox, 1996), and methods from Fracasso et al. (2016)
as described in Svanera et al. (2021).

In addition, while FastSurferVINN produces segmen-
tations at the native input image resolution, SynthSeg
solely segments images at 1.0 mm3, irrespective of the
input resolution of the images. In order to obtain label
maps at the same resolution as GOUHFI and FastSurfer-
VINN and allow for quantitative comparisons, the same
external up-sampling strategy using one-hot encoded 3D
linear interpolation for label maps as done for GOUHFI
was implemented in-house for SynthSeg.

For calculating DSC and ASD, the choroid plexus
(both hemispheres) and WM-hypointensities were
excluded since SynthSeg does not segment these labels.
Consequently, the lateral and inferior lateral ventricles
(both hemispheres) were also excluded since both

regions are directly impacted by the presence of the cho-
roid plexus label. Finally, the CSF was also excluded
since SynthSeg defines CSF in a completely different
way than FastSurferVINN and GOUHFI. In case a label
was missing in a label map (i.e., not segmented), DSC
and ASD values were set to 0 and NaN, respectively.

2.5.2. STRAT-PARK: Volumetry analysis

To further assess GOUHFI’'s performance, a volumetric
analysis was performed with the START-PARK dataset.
For both HC and PDP, the median group volume for the
putamen, amygdala, and hippocampus, normalized by
the total intracranial volume (TIV), was computed based
on the segmentations produced by FastSurferVINN,
GOUHFI, and SynthSeg. The TIV values were computed
with SPM12 (Ashburner, 2012) and the region-of-interest
(ROI) volumes were computed by multiplying the voxel
volume by the number of voxels for each ROI. These
ROls were selected based on the literature for PD (Geng
et al., 2006; Junqué et al., 2005; Pieperhoff et al., 2022).
A Mann-Whitney U test (Mann & Whitney, 1947) with
Bonferroni-corrected p-values (Bonferroni, 1936) was
computed to measure the statistical differences between
each group for both segmentation tools.

3. RESULTS

3.1. HCP-YA: Benchmarking against
FastSurferVINN and SynthSeg at 3T

The segmentations produced by SynthSeg and GOUHFI
for both T1w and T2w (0.7 mm)3 3T images and by Fast-
SurferVINN for the T1w images only are shown in Fig-
ure 2. No segmentation is shown for the T2w images for
FastSurferVINN since the technique segments Tiw
images only. Visually, segmentations produced on both
the T1w and T2w images were extremely similar to the
ones produced by FastSurferVINN for both SynthSeg
and GOUHFI. Visually, differences in cortex and cerebel-
lum WM delineations could be observed for SynthSeg
compared with GOUHFI. Moreover, the segmentation
boundary of the putamen was extended laterally for
SynthSeg compared with both FastSurferVINN and
GOUHFI. For SynthSeg, the thalamus delineation was
different following a more irregular boundary than the two
other techniques as seen with the axial plane. The median
and 95% confidence intervals (Cl) for the DSC and ASD
computed across all subjects (n = 20) and labels with a
selected subset are given in Table 2. Overall, GOUHFI
produced higher and lower median DSC and ASD values,
respectively, for all labels except for the cerebellum WM
and cortex compared with SynthSeg.
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Fig. 2. Segmentations produced by FastSurferVINN (second column), SynthSeg (third column), and GOUHFI (right
column) for one subject in all anatomical planes for the T1w (top) and T2w (bottom) contrasts from the HCP dataset (3T).
No segmentations are shown for the T2w image for FastSurferVINN since it only segments T1w images. Dark blue arrows
represent regions of discrepancies for the thalamus region with the ground truth for SynthSeg. Turquoise arrows point to
cortical regions with limited delineation by SynthSeg. Green arrows show systematic errors with SynthSeg including the
claustrum in the putamen label. Yellow arrows show differences in cerebellum WM segmentation. The labels shown and
their colors correspond to the FreeSurfer lookup table.

3.2. SCAIFIELD: Contrast- and resolution-agnostic

performance at 7T

In Figure 3, the segmentations produced by GOUHFI and
SynthSeg for all four contrasts and by FastSurferVINN for
the T1lw MPRAGE are shown. As for the HCP dataset

shown in Section 3.1, the segmentations computed by
GOUHFI and SynthSeg are visually highly similar to the
one from FastSurferVINN for the SCA-T1w. This is also
demonstrated quantitatively with the DSC and ASD val-
ues reported in the first column of Table 3. Even when
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Table 2. Median DSC and ASD values (with 95% Cls) computed for HCP subjects (n = 20) using GOUHFI and SynthSeg.

HCP-T1w HCP-T2w

DSC GOUHFI SynthSeg GOUHFI SynthSeg

WM 0.96 [0.96, 0.97] 0.93 [0.92, 0.93] 0.95 [0.94, 0.95] 0.90 [0.90, 0.91]
Cortex 0.92[0.92, 0.92] 0.88[0.88, 0.88] 0.90 [0.90, 0.90] 0.85 [0.85, 0.85]
Putamen 0.94 [0.93, 0.94] 0.90 [0.89, 0.90] 0.92 [0.91, 0.92] 0.88 [0.88, 0.89]
Thalamus 0.93 [0.92, 0.93] 0.91 [0.91, 0.92] 0.92 [0.91, 0.92] 0.92 [0.92, 0.92]
Pallidum 0.85 [0.84, 0.86] 0.82[0.81, 0.83] 0.84 [0.83, 0.85] 0.81[0.79, 0.81]
Cerebellum WM 0.87 [0.87, 0.87] 0.88 [0.88, 0.89] 0.85[0.85, 0.85] 0.87 [0.87, 0.87]
Cerebellum Cortex 0.90 [0.89, 0.90] 0.93 [0.92, 0.93] 0.89 [0.88, 0.89] 0.91 [0.90, 0.91]
Median (27 labels) 0.91 [0.90, 0.91] 0.89 [0.88, 0.89] 0.89 [0.88, 0.89] 0.87 [0.86, 0.87]

HCP-T1w HCP-T2w

ASD [mm] GOUHFI SynthSeg GOUHFI SynthSeg

WM 0.19[0.19, 0.19] 0.34 [0.33, 0.34] 0.27 [0.27, 0.29] 0.41 [0.40, 0.42]
Cortex 0.26 [0.26, 0.33] 0.36 [0.36, 0.37] 0.31 [0.31, 0.33] 0.42[0.42, 0.43]
Putamen 0.32[0.32, 0.34] 0.54 [0.53, 0.57] 0.40 [0.40, 0.43] 0.62 [0.60, 0.66]
Thalamus 0.52 [0.51, 0.57] 0.56 [0.55, 0.60] 0.61 [0.59, 0.65] 0.54 [0.54, 0.58]
Pallidum 0.54 [0.51, 0.58] 0.56 [0.55, 0.61] 0.58 [0.57, 0.62] 0.62 [0.62, 0.69]
Cerebellum WM 0.67 [0.63, 0.70] 0.54 [0.51, 0.59] 0.81[0.79, 0.86] 0.62 [0.60, 0.67]
Cerebellum Cortex 0.90 [0.87, 0.95] 0.57 [0.56, 0.59] 0.93 [0.91, 0.99] 0.66 [0.64, 0.68]
Median (27 labels) 0.45 [0.43, 0.47] 0.50 [0.48, 0.50] 0.47 [0.51, 0.54] 0.55 [0.54, 0.56]

The ground truth is the segmentation produced by FastSurferVINN at native resolution using the T1w images. The highest DSC (and

lowest ASD) value is shown in bold.

using a pTx excitation combined with N4-correction for
the MPRAGE images, signs of limited segmentation
capacities for 7T images started to appear for FastSurfer-
VINN as shown with the blue arrows in Figure 3. Overall,
SynthSeg demonstrated a lower capacity to accurately
delineate thin cerebellum WM branches in addition of
grossly overestimating size of WM in small folded WM-
cortex boundary regions across all contrasts tested com-
pared with GOUHFI (red arrows on Fig. 3). For the
SCA-T1w case, GOUHFI had consistently better DSC
and ASD values than SynthSeg for all labels tested with a
marked difference for the cortex.

The performance of GOUHFI, SynthSeg, and Fast-
SurferVINN on one subject, for which an 1Tx (0.6 mm)?
MPRAGE acquisition was acquired (neither part of the
training nor the test datasets), is demonstrated in Fig-
ure 4. GOUHFI and SynthSeg created substantially better
segmentations than FastSurferVINN as expected, espe-
cially in regions affected by signal and contrast alterations
related to reduced RF transmit inhomogeneities. How-
ever, as similarly shown in Figure 3, SynthSeg also showed
limited capacity to properly identify the boundary between
WM and cortex in some regions compared with GOUHFI.

3.3. Glasgow dataset: GOUHFI versus
CEREBRUM-7T

GOUHFI and SynthSeg were tested against CERE-
BRUM-7T, the only brain segmentation technique opti-

10

mized for 7T images. The results for one example subject
are shown in Figure 5. The DSC and ASD values com-
puted for CEREBRUM-7T, SynthSeg, and GOUHFI
against the iGT are reported in Table 4. Both GOUHFI and
SynthSeg produced highly similar segmentations
between each other and to CEREBRUM-7T, although
CEREBRUM-7T being the method with the highest DSC
and ASD with the iGT across all labels.

3.4. MPI-CBS: GOUHFI and SynthSeg performance
for ultra-high-resolution and inhomogeneous 7T
images

Three example subjects from the MPI-CBS with (0.4 mm)?
1Tx MP2RAGE acquired at 7T and their corresponding
segmentations produced by SynthSeg and GOUHFI are
displayed in Figure 6. Although the network segments
images at (0.7 mm)2 (resolution used by the network for
training), the ultra-high resolution of this dataset posed
no problem for GOUHFI to properly delineate the brain
regions at (0.4 mm)3. However, since it was only trained
with label maps at 1 mm3, SynthSeg showed a limited
capacity to show the same level of details especially for
the cortex and cerebellum WM branches as also reported
in previous sections. Both techniques were able to man-
age the high level of inhomogeneity and noise present in
the images. For subject 16, SynthSeg showed superior
identification of the cerebellum cortex in comparison with
GOUHFI. However, in all cases, SynthSeg systematically
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pTx 7T protocol

FastSurferVINN

SynthSeg

GOUHFI

GOUHFI

Fig. 3. Segmentations produced by FastSurferVINN (first row), SynthSeg (second row), and GOUHFI (bottom row) for
one subject in the coronal (top part) and sagittal (bottom part) planes for the T1w MPRAGE (left), MPM-MTw (second

from the left), MPM-PDw (second from the right), and MPM-T1w (right) contrasts from the SCAIFIELD dataset (7T). All
images and segmentations have a resolution of (0.6 mm)3. The MPRAGE images have been N4-corrected whereas all
MPM contrasts have not. Segmentations from FastSurferVINN are shown for the T1w image only since it only segments
T1w images. Blue arrows represent regions of mislabeling from FastSurferVINN (used as ground truth), whereas green
arrows show discrepancies between the different MPM contrasts. Pink arrows represent mislabeling of cerebellum WM by
SynthSeg. Red arrows represent mislabeling between WM and cortex inside the cerebrum where SynthSeg overestimated
WM segmentation. The labels shown and their colors correspond to the FreeSurfer lookup table.
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Table 3. Median DSC and ASD values (with 95% Cls) computed for the four contrasts in the SCAIFIELD dataset (n = 10)
using GOUHFI and SynthSeg.

SCA-T1w (GT) MPM (GTg600)

DSC GOUHFI SynthSeg MPM-MTw* MPM-T1w MPM-PDw
WM 0.97[0.97,0.97] 0.92[0.92,0.92] 0.92[0.92,0.93] 0.90[0.90,0.90]  0.90 [0.89, 0.90]
Cortex 0.91[0.90,0.92] 0.82[0.81,0.82] 0.87[0.87,0.88] 0.87[0.86,0.87]  0.85[0.84, 0.86]
Putamen 0.94[0.93,0.94]  0.91[0.90,0.91]  0.91[0.91,0.92] 0.88[0.87,0.89]  0.87 [0.85, 0.88]
Thalamus 0.94[0.93,0.94] 0.92[0.91,0.92] 0.91[0.91,0.93] 0.93[0.92,0.93]  0.92[0.91, 0.92]
Pallidum 0.88[0.86,0.89]  0.86[0.84,0.86]  0.85[0.80,0.87] 0.80[0.78,0.22]  0.78[0.74, 0.81]
Cerebellum WM 0.91[0.90,0.91] 0.87[0.87,0.88]  0.89[0.88,0.90]  0.82[0.81,0.83]  0.90 [0.89, 0.90]
Cerebellum Cortex ~ 0.94[0.93,0.94]  0.91[0.90,0.91] 0.93[0.92,0.93]  0.92[0.91,0.92]  0.93[0.93, 0.93]
Median (27 labels)  0.91[0.90,0.91]  0.88[0.87,0.88]  0.89[0.87,0.89]  0.87 [0.85,0.86]  0.84 [0.82, 0.84]

SCA-T1w (GT) MPM (GTg 1600

ASD [mm] GOUHFI SynthSeg MPM-MTw* MPM-T1w MPM-PDw
WM 0.13[0.13,0.14]  0.36[0.35,0.36]  0.44 [0.41,0.46]  0.54[0.52,0.57]  0.57 [0.54, 0.61]
Cortex 0.23[0.22,0.25]  0.45[0.44,0.46]  0.50[0.47,0.52]  0.52[0.49,0.58]  0.61[0.59, 0.70]
Putamen 0.26 [0.25,0.31]  0.47[0.45,0.50]  0.41[0.38,0.44] 0.54[0.53,0.65]  0.63[0.55, 0.67]
Thalamus 0.41[0.39,0.48]  0.49[0.49,0.55]  0.55[0.51,0.65] 0.50[0.48,0.55]  0.61[0.57, 0.66]
Pallidum 0.43[0.38,0.46] 0.45[0.44,0.51] 0.72[0.61,0.87] 0.78[0.71,0.82]  0.79[0.77, 1.01]
Cerebellum WM 0.32[0.29,0.34] 0.45[0.43,0.51]  0.51[0.45,0.54] 0.69[0.67,0.77]  0.53[0.52, 0.58]
Cerebellum Cortex ~ 0.49[0.46, 0.55]  0.65[0.64,0.67]  0.59[0.55,0.63]  0.65[0.63,0.69]  0.65[0.61, 0.65]
Median (27 labels)  0.34[0.34,0.38]  0.48[0.48,0.52]  0.50[0.48,0.53]  0.56 [0.56,0.61]  0.64 [0.66, 0.72]

The ground truth for SCA-T1w was the segmentation produced by FastSurferVINN at native resolution using the N4-corrected pTx T1w

images (GT,,,) whereas for the three MPM contrasts, the up-sampled segmentation produced by SynthSeg was used (GT,

SynthSeQ). For the

comparison of GOUHFI and SynthSeg versus FastSurferVINN, the highest DSC (and lowest ASD) value is shown in bold.
*A subset of four subjects was used for MPM-MTw since several subjects did not include an MTw MPM scan.

and inaccurately overextended laterally the cerebellum
cortex.

3.5. UltraCortex: Performance of GOUHFI and
SynthSeg against manual white and gray matter
delineations at 9.4T

In Table 5, the median DSC and ASD values computed
for GOUHFI and SynthSeg against the manual delinea-
tions for WM and GM are reported for the UltraCortex
dataset. GOUHFI systematically outperformed SynthSeg
for every label and sub-dataset, with a substantial advan-
tage for the cortex label with up to 7 Dice points improve-
ment over SynthSeg.

3.6. STRAT-PARK: Parkinson’s disease volumetry
study at 7T

The volumetric analysis results are shown in Figure 7. The
same consistent decrease trend between HC and PDP
was observed for all techniques for the putamen, hippo-
campus, and amygdala. It was only for putamen that all
techniques presented a statistically significant difference
between both HC and PDP sub-groups. For GOUHFI, the
median volumes measured were larger than FastSurfer-
VINN for both HC and PDP, whereas the opposite trend
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was observed for the amygdala. However, the median
volume computed for the amygdala for SynthSeg was
considerably and unexpectedly larger than both Fast-
SurferVINN and GOUHFI. The p-values calculated were
the following for FastSurferVINN/GOUHFI/SynthSeg:
0.002/0.004/0.0004 for putamen, 0.22/1.0/0.31 for hippo-
campus, and 0.36/0.06/0.27 for amygdala (Bonferroni-
corrected significance threshold: p-value < 0.006).

3.7. Human Brain Atlas: Ultra-High Resolution at 7T

Zoomed-in coronal views of the (0.25 mm)® segmenta-
tions produced by FastSurferVINN, SynthSeg, and
GOUHFI for the cerebellum and parietal lobe are pre-
sented in Figure 8. For FastSurferVINN, a significant
amount of cerebellar WM branches was not segmented
even in regions not affected by signal inhomogeneities as
shown with the green arrows. Although improvements
were noticeable with SynthSeg, the best overall detection
and segmentation of cerebellum WM was done by
GOUHFI. Moreover, perivascular spaces (PVS) in WM,
which become more easily visible at this resolution, were
often segmented as background or cortex for FastSurfer-
VINN (blue arrows in Fig. 8), whereas SynthSeg and
GOUHFI segmented them as WM. SynthSeg showed lim-
itations in some cortex regions with noticeable mislabeling
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Fig. 4. Visual comparison between the segmentations produced by FastSurferVINN (second row), SynthSeg (third row),
and GOUHFI (bottom row) on a 1 Tx MPRAGE acquired for one additional SCAIFIELD subject (7T). Significant signal and
contrast inhomogeneities are present. This subject was neither included in the training nor in the testing datasets. The
sagittal (first column) and coronal (second column) planes with a zoomed-in version of another coronal slice (third column)
with the segmentation borders overlaid are shown. All images and segmentations have a resolution of (0.6 mm)3. Blue
arrows represent FastSurferVINN and SynthSeg outputs being affected by signal inhomogeneities. The green arrows show
the difference in cerebellar cortex delineation between SynthSeg and GOUHFI. Yellow arrows show segmentation errors by
SynthSeg for the cerebellum WM and cortex. The labels shown and their colors correspond to the FreeSurfer lookup table.

of non-cortical voxels as cortex. Furthermore, SynthSeg
segmentation showed non-smooth, step-like delinea-
tions, which FastSurferVINN and GOUHFI did not show.

3.8. Impact of label granularity from 3T to UHF-MRI

Figure 9 illustrates the impact of training GOUHFI with
label maps generated by FastSurferVINN, tailored to the
granularity level typical at 1.5-3T, when applied to UHF
images. FastSurferVINN performed the poorest among
the three techniques at properly delineating the putamen
by systematically including the claustrum in all examples
shown. In contrast, although some small portions of the
claustrum were still included or, alternatively, the bound-
ary of the putamen was slightly misaligned, GOUHFI per-
formed the best and was the least affected technique by
this systematic error among the three. Additionally, for
the MPI-CBS and HBA cases where different sub-fields
boundaries of the thalamus were discernible, all tech-
niques struggled to accurately identify the thalamus
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boundary, which resulted in all of them creating a ficti-
tious boundary that did not reflect the internal contrast
observed.

4. DISCUSSION

In this study, a novel DL-based segmentation technique
capable of segmenting brain MR images of any contrast
and resolution is proposed. As shown, GOUHFI was able
to accurately segment MR images acquired at 3T, 7T, and
9.4T with a total of six different contrasts and seven dif-
ferent resolutions. GOUHFI performed well on highly
inhomogeneous 1Tx images acquired at 7T and 9.4T
where standard tools are prone to failure. Moreover,
GOUHFI demonstrated highly similar performance
against domain-specific techniques such as FastSurfer-
VINN or CEREBRUM-7T when tested in their respective
domains while also consistently outperforming SynthSeg,
the only DL-based contrast-agnostic segmentation tool
available. Ultimately, when used to assess its ability to
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Fig. 5. Segmentations produced by CEREBRUM-7T (third row), SynthSeg (fourth row), GOUHFI (last row) with

the corresponding iGT (second row the top) for one subject in all anatomical planes from the test dataset used for
CEREBRUM-T7T. All images and segmentations have a resolution of (0.63 mm)3. Yellow arrows point to regions where the
iGT (ground truth) seems sub-optimal compared with CEREBRUM-7T, SynthSeg, and GOUHFI. The labels shown here are
gray matter (blue), white matter (red), ventricles (purple), basal ganglia (white), and cerebellum (violet). The brainstem is
also segmented but not visible in this figure.
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Table 4. Median DSC and ASD values (with 95% Cls) for each label across all test cases (n = 21) using segmentations
from CEREBRUM-7T, GOUHFI, and SynthSeg.

DSC CEREBRUM-7T GOUHFI SynthSeg
WM 0.94 [0.94, 0.94] 0.92[0.91, 0.92] 0.90 [0.89, 0.91]
Cortex 0.91 [0.90, 0.91] 0.86 [0.86, 0.86] 0.83 [0.83, 0.84]
Basal ganglia 0.89 [0.89, 0.90] 0.86 [0.86, 0.87] 0.87 [0.86, 0.88]
Ventricles 0.86 [0.85, 0.87] 0.85 [0.83, 0.86] 0.84[0.83, 0.86]
Brainstem 0.93 [0.92, 0.93] 0.91 [0.90, 0.91] 0.91 [0.90, 0.91]
Cerebellum 0.93 [0.88, 0.94] 0.92 [0.86, 0.92] 0.89 [0.83, 0.90]
Median 0.91 [0.90, 0.91] 0.88 [0.87, 0.89] 0.88 [0.86, 0.87]
ASD [mm] CEREBRUM-7T GOUHFI SynthSeg

WM 0.24 [0.24, 0.25] 0.35[0.34, 0.36] 0.44 [0.43, 0.45]
Cortex 0.28 [0.28, 0.29] 0.43 [0.42, 0.44] 0.50 [0.49, 0.50]
Basal ganglia 0.48 [0.46, 0.50] 0.60 [0.56, 0.63] 0.59 [0.56, 0.63]
Ventricles 0.35 [0.34, 0.45] 0.39 [0.37, 0.46] 0.38 [0.36, 0.47]
Brainstem 0.43 [0.41, 0.48] 0.54 [0.51, 0.64] 0.53 [0.50, 0.62]
Cerebellum 0.68 [0.63, 1.21] 0.90 [0.87, 1.51] 1.26[1.18, 1.89]
Median 0.38 [0.40, 0.52] 0.49 [0.52, 0.66] 0.51 [0.58, 0.76]

Ground truth is the iGT as described in Svanera et al. (2021). The highest DSC (and lowest ASD) is shown in bold.

(0.4mm)®
1Tx 7T MP2RAGE

SynthSeg GOUHFI

Subject 15

Subject 16

Subject 27

Fig. 6. Segmentation results produced by SynthSeg (middle column) and GOUHFI (right column) for three subjects from
the MPI-CBS dataset in the coronal plane. All images were acquired at 7T with 1Tx (0.4 mm)® MP2RAGE (same resolution
for the segmentations). Red arrows point to segmentation errors in cortex and cerebellum cortex delineations.
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Table 5. Median DSC and ASD values (with 95% Cls) computed for the WM and GM segmentations (left and right
hemispheres combined) produced by GOUHFI and SynthSeg for subjects with manual segments provided in the

UltraCortex dataset ((0.6 mm)* MP2RAGE n_, = 8, (0.6 mm)®* MPRAGE n_,, = 3 and (0.8 mm)> MP2RAGE n_, =1.).

b b b

(0.6 mm)® MP2RAGE (0.6 mm)® MPRAGE (0.8 mm)® MP2RAGE
DSC GOUHFI SynthSeg GOUHFI SynthSeg GOUHFI SynthSeg
White matter ~ 0.97 [0.97, 0.97] 0.94 [0.94, 0.94] 0.97 [0.96, 0.97] 0.93[0.93, 0.94] 0.95 [-, -] 0.93[-, -]
Cortex 0.91 [0.91, 0.91] 0.85[0.84, 0.85] 0.90 [0.89, 0.92] 0.85[0.84, 0.87] 0.89 [-, -] 0.83 [, -]

(0.6 mm)® MP2RAGE (0.6 mm)® MPRAGE (0.8 mm)® MP2RAGE
ASD [mm] GOUHFI SynthSeg GOUHFI SynthSeg GOUHFI SynthSeg
White matter ~ 0.26 [0.25,0.29]  0.39[0.37,0.39]  0.27 [0.25,0.32]  0.44[0.43,0.44] 0.35[-,-] 0.44[-, -]
Cortex 0.25 [0.25, 0.27] 0.45[0.44, 0.46] 0.29 [0.26, 0.35] 0.44 [0.39, 0.47] 0.33[-,-] 0.48][- ]

The highest DSC (and lowest ASD) are shown in bold.
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Fig. 7. Box plots showing the normalized volumes measured by FastSurferVINN (left), GOUHFI (middle), and SynthSeg
(right) for healthy controls (HC) and Parkinson’s disease patients (PDP) for the putamen, hippocampus, and amygdala. For
putamen, the three techniques had a statistically significant difference in volume between HC and PDP after Bonferroni
correction.

detect volumetric changes in Parkinson’s disease, of the labels (see Appendix Fig. A.1 in Appendix A.3).
GOUHFI showed similar performance to FastSurferVINN  While, in theory, the label maps created by FreeSurfer are
and SynthSeg to monitor volume losses in accordance at the same resolution as the input images, the “effective
with the literature. resolution” of the label maps is visibly lower. Considering
that only sub-millimeter resolutions were used for training
and that the intended usage of GOUHFI is for sub-
millimeter images, FastSurferVINN was preferred since it
All previous DL-based segmentation techniques that have  produced more refined delineations than FreeSurfer.

been trained on automatically produced label maps have In this study, only automatically produced label maps
used FreeSurfer to produce the training label maps. Tothe  were used for the training corpus, as it was done for Fast-
best of our knowledge, GOUHFI is the first technique to  SurferVINN. While this could be a potential issue when
use FastSurferVINN-based label maps in the training using real UHF images for training, this is not the case
dataset. This choice was made based on the fact that the when using synthetic images. If minor segmentation
label maps produced by FreeSurfer, even with the sub- errors with respect to the corresponding real T1w input
millimeter option selected, produced coarse delineations image would be present in the label map (e.g., small parts

4.1. Training label maps
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temporal lobe
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Fig. 8. Segmentations produced by FastSurferVINN (second row), SynthSeg (third row), and GOUHFI (last row) at
(0.25 mm)? for the averaged T1w image in the coronal plane for subject 001 from the Human Brain Atlas dataset (7T).
The first column shows a zoomed-in version of the cerebellum and temporal lobe, whereas the second column shows
the parietal lobe. Green arrows show differences in segmentations between the three methods for fine cerebellar WM
branches and their corresponding segmentations, whereas blue arrows show the perivascular spaces inside WM.
Turquoise arrows point to cortex segmentation errors for SynthSeg.

missing from the cerebellum or temporal lobes due to
inhomogeneities), these errors would be “lost” during the
creation of the synthetic image for that subject. By
design, the synthetic images and corresponding label
maps are perfectly aligned with each other. As mentioned
in Billot et al. (2023), and again demonstrated in this
study, the usage of automatically produced label maps
for synthetic training data is not only possible, but highly
recommended since it allows to considerably increase
the number of training cases. In fact, even for techniques
such as FastSurferVINN, which are not based on syn-
thetic training images, the size of the training corpus was
shown to be the most important factor to improve the
model (Henschel et al., 2022). Ultimately, as mentioned in

17

the Methods section, extensive visual QA was done on
the label maps produced by FastSurferVINN for the UHF
images before including them in the study (only 15 out of
the 78 subjects were kept from the UltraCortex dataset).
Since real images were used for validation, we had to
make sure that both the quality of the T1w images and
label maps were good enough since mismatch between
both would negatively impact the validation process.

4.2. HCP-YA: Benchmarking against
FastSurferVINN and SynthSeg at 3T

For both contrasts tested from the 3T HCP-YA dataset,
GOUHFI performed remarkably well and systematically
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Putamen
Pallidum
Thalamus
Cortex

HCP-YA
(0.7mm)®

SCAIFIELD
(0.6mm)®

-

FastSurferVINN

SynthSeg

GOUHFI

MPI-CBS
(0.4mm)®

Fig. 9. Close-up view of an axial slice showing the segmentations of the putamen, pallidum, thalamus, and cortex

in the right hemisphere by FastSurferVINN (first row), SynthSeg (second row), and GOUHFI (last row) overlaid on the
corresponding T1w image used for segmentation. Red arrows show cases where significant parts of the claustrum are
segmented as putamen. Yellow arrows show cases where a small portion of the claustrum is included or that the boundary
of the putamen is slightly misaligned with its actual border while not including the claustrum. Orange arrows represent
ultra-high-resolution cases where subfields of the thalamus can be observed while not being properly segmented.

better than SynthSeg. The only ROIs where SynthSeg
produced better DSC and ASD values than GOUHFI were
for the cerebellar WM and cortex. That can be explained
by the similar behavior of SynthSeg to reproduce the lim-
ited identification of inferior cerebellar WM branches like
FastSurferVINN does. Indeed, GOUHFI detected sub-
stantially more cerebellar WM than both FastSurferVINN
(reference technique) and SynthSeg, resulting in lower
DSC and ASD for both cerebellar WM and cortex. Inter-
estingly, GOUHFI used the same DR approach to create
the synthetic training data as SynthSeg. However, for
GOUHFI, it resulted in a superior detection of the thin
cerebellar WM branches and cortex sulci. Thus, the fact
that (1) GOUHFI was trained using only sub-millimeter
label maps (with (0.7 mm)? as the training resolution) and
(2) the randomized downsampling step as done in
SynthSeg was disabled could explain this improved iden-
tification of high-resolution anatomy features.

Moreover, the T1Tw MPRAGE images gave higher DSC
and lower ASD values than the T2w images, although only
T2w from this dataset was used for the validation set
during training. One can argue that T1w was well repre-
sented in the validation dataset. However, all other T1w
images used for validation were either from a different
vendor (ABIDE-Il ETH: Philips Achieva with 3D TFE
sequence & ABIDE-Il EMC: GE MR750 with IR-FSPGR
sequence) or different field strength and sequence (Ultra-
Cortex: 9.4T with MP2RAGE). Another possible explana-
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tion for this could be that it is a consequence of using
label maps originally produced from T1w images for the
creation of the synthetic training data, which all exhibit the
same T1w-visible structures. Ultimately, the finding that
GOUHFI produced segmentations with DSC > 0.88 and
ASD smaller than 1 voxel over 27 labels and 20 subjects
in FastSurferVINN’s domain (i.e., 3T (0.7 mm)® Tiw
MPRAGE) is a strong indication of its robustness and
comparable performance for segmentation tasks even
outside GOUHFI’s optimized domain (i.e., UHF-MRI) while
also being superior to alternatives such as SynthSeg.

4.3. SCAIFIELD: Contrast- and resolution-agnostic
performance at 7T

The SCAIFIELD dataset served as an excellent test data-
set for GOUHFI considering its variety of contrasts, reso-
lution different from the trained one, and its UHF nature.
GOUHFI demonstrated its contrast-agnostic perfor-
mance by segmenting all four contrasts well. Overall,
GOUHFI showed a significantly higher level of details
than SynthSeg, especially within the cortex and both the
cerebellar WM and cortex labels as similarly reported for
the HCP-YA dataset. These observations reinforce the
idea that SynthSeg’s use of 1.0 mm? training resolution,
combined with the random down-sampling of the training
label maps, negatively impacts the quality of the seg-
mentations for UHF images.
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For the three MPM contrasts, with SynthSeg as the
reference technique, the MPM-PDw image appeared to
be the most challenging to segment based on the quan-
titative metrics computed. However, one could argue that
the segmentations displayed in Figure 3 for GOUHFI
showed a lower level of detail for the MPM-T1w than the
MPM-PDw, especially in the cerebellum. Ultimately, the
better quantitative performance of MPM-T1w over MPM-
PDw might be explainable by one simple observation:
SynthSeg has limited capacity to segment lower contrast
regimes at high resolutions such as the MPM-PDw and
MPM-T1w, resulting in a poor reference to compare
GOUHFI with. Nonetheless, it is important to mention
that GOUHFI was also challenged by the low level of con-
trast in the MPM-T1w, but appeared to segment only vis-
ible structures rather than inferring or “hallucinating”
invisible regions (cf. pink arrows pointing to cerebellum
WM in the coronal view of SynthSeg for the MPM-T1w).
Ultimately, the “better” quantitative performance for the
MPM-T1w is probably due to a poorer but “matched”
performance between SynthSeg and GOUHFI.

Similar to the T2w versus T1w contrast-agnostic com-
parison using the HCP-YA data, it is interesting to observe
that the MPM-PDw dataset showed the lowest quantita-
tive agreement with the reference, while at the same time
being the contrast used for the validation dataset for
SCAIFIELD data during training.

While being contrast agnostic is a great feature of
GOUHFI (and SynthSeg), one inherent aspect of this is its
strong generalization to T1w contrast variations. T1w
contrast is considered the standard for high-resolution
anatomical brain images, however, there is still a wide
variety of implementations of T1w contrasts. Indeed,
whether it is a difference rising from sequence selection
(e.g., MPRAGE vs. MP2RAGE), choice of acquisition
parameters (e.g., Tl, TE and FA values), or even vendor
implementations (e.g., Siemens’ MPRAGE vs. GE IR-
FSPGR), T1w can appear quite different across centers
or neuroimaging studies. Therefore, as shown in Billot
et al. (2023), DL segmentation techniques trained on spe-
cific T1w images showed poor generalization to other
T1w contrasts, whereas contrast-agnostic techniques
such as SynthSeg and GOUHFI performed remarkably
well and even better in some cases. Essentially, even if
not designed or optimized for T1w contrast, GOUHFI
should still be considered as a robust and accurate seg-
mentation option for T1w datasets.

For the SCA-T1w, FastSurferVINN segmentations
were still chosen as ground truth over SynthSeg (used for
the three MPM contrasts). From ad hoc qualitative
assessment of the segmentation quality, FastSurferVINN
was deemed a superior segmentation technique over
SynthSeg even if it was not designed for 7T and
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< (0.7 mm)® images. Previous work (Fortin et al., 2025)
showed that FastSurferVINN performed quite well when
N4-correction and pTx pulses were used. Indeed, as
shown in Figure 3, the MPRAGE image does not exhibit
the typical strong signal inhomogeneities observed at 7T,
and the full cerebellum and temporal lobes were properly
detected by FastSurferVINN. SynthSeg showed poor
boundary detection between WM and cortex in highly
gyrified regions (red arrows on sagittal view of Fig. 3)
probably due to its low training resolution (+9 Dice points
for the cortex label for GOUHFI compared with SynthSeg
[0.91 vs. 0.82 respectively]). This was determinant in the
decision to not pick SynthSeg as the ground truth for the
SCA-T1w case. However, signs of limitations for Fast-
SurferVINN could be observed such as cortical voxels
being mislabeled as WM in some cases, or a significant
number of cerebellar WM branches not being detected
(common issue with SynthSeg). It is also important to
mention that the latter issue did not seem to be a 7T-spe-
cific issue as cerebellar WM branches appeared to be
also difficult to segment at 3T for the T1w images from
the HCP dataset (see Fig. 2).

Moreover, it is essential to highlight that even if the
theoretical best DSC score achievable is 1, in this work,
DSC scores between 0.85 and 0.90 were desired due to
the use of a “silver standard” as ground truth. For most
test cases tested in this work where FastSurferVINN was
set as the reference, it must be highlighted that authors
were fully aware that it was not expected to perform well
outside the HCP and pTx SCAIFIELD test scenarios. For
non-T1w contrasts, SynthSeg was the best and only
DL contrast-agnostic technique available to compare
GOUHFI with. However, its low training resolution applied
to high-resolution images made it a questionable choice
as a reference as discussed previously in this section.
Thus, in the SCAIFIELD MPM case, the DSC and ASD
scores reported against SynthSeg should not be inter-
preted as direct quantitative assessment of GOUHFI’s
performance for UHF-MRI, but rather as a general indica-
tor of how it compared with SynthSeg. Ultimately, this
further emphasizes the necessity for novel segmentation
techniques to be developed for UHF-MRI.

In all cases tested in this work, GOUHFI demonstrated
improved segmentation of cerebellar WM branches over
FastSurferVINN and SynthSeg, even in cases such as
HCP-T1w where both should be expected to be superior.
This makes GOUHFI particularly interesting for neuroim-
aging studies where the cerebellum is of importance, like
for spinocerebellar ataxias (Arruda et al., 2020; Ferreira
et al., 2024), whether it is UHF-MRI or not.

Results displayed in Figure 4 showcased GOUHFI’s
and SynthSeg’s capacity to segment highly inhomoge-
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neous UHF images, significantly better than FastSurfer-
VINN. Even in the cerebellum region with extremely low
signal, GOUHFI was able to properly delineate the cere-
bellar GM and WM, whereas SynthSeg “over-segmented”
the superior region of the cerebellar WM in a similar fash-
ion as for the MPM-T1w as previously discussed. Con-
versely, even for cortical regions in the parietal and frontal
lobes affected by hyperintense signal, GOUHFI accu-
rately detected WM and GM voxels. SynthSeg showed
limitations in properly delineating the fine cortical regions
with frequent mislabeling resulting in overly segmenting
non-cortical voxels as cortex. Overall, SynthSeg showed
the same level of resistance to signal inhomogeneity
as GOUHFI with most of its limitations probably due to
the low training resolution. Since a substantial level of
noise was present in the inferior part of the cerebellum,
it was not clear where the actual border of the cere-
bellum was. It is fair to say that SynthSeg proposed a
more cautious estimate of it compared with GOUHFI.
However, SynthSeg has repetitively shown signs of over-
cautiousness with these results (yellow arrows on Fig. 4)
and with the MPI-CBS dataset too. Nonetheless, the best
identification of the cerebellum GM between SynthSeg
and GOUHFI is quite challenging to assess with certainty.
Ultimately, the increased random signal bias imple-
mented in the generative model used by GOUHFI for the
creation of synthetic training images did not seem to
meaningfully modify the overall high inhomogeneity resis-
tance that was already present with SynthSeg’s genera-
tive model.

As a result, this resistance of GOUHFI to high levels of
noise, granularity, and inhomogeneity is a direct outcome
of the use of synthetic images for training. As shown with
the example dataset in Figure 1, the synthetic images
exhibited similar features to typical UHF images due to
the randomly simulated noise and inhomogeneities gen-
erated in the images while the corresponding segmenta-
tions remained unaffected. This would not be possible if
real images were used for training, since the segmenta-
tions would be directly affected by the noise and inhomo-
geneity levels present in the input images.

4.4. Glasgow dataset: GOUHFI versus
CEREBRUM-7T

Both GOUHFI and SynthSeg performed as well against
CEREBRUM-T7T and its iGT. Even if the quantitative met-
rics were slightly lower for GOUHFI and SynthSeg than
for CEREBRUM-7T, we would like to argue that this might
be the consequence of using the iGT as the ground truth.
Indeed, suboptimal delineations were observable in the
iGT segments as shown in Figure 5 with the yellow
arrows. For instance, coarse delineations were present
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especially for small cortical regions or the basal ganglia.
Moreover, CEREBRUM-7T falsely assigned voxels
affected by partial volume effects at the border of ventri-
cles and WM as gray matter, which was also the case for
the iGT but not GOUHFI nor SynthSeg. Moreover, the
cerebellum segmentation in the iGT was noticeably poor.

Since CEREBRUM-7T is the only segmentation tech-
nique optimized for 7T images, one might argue that it
should have been the preferred technique for comparison
against GOUHFI in this study. However, two main reasons
can explain why SynthSeg (or even FastSurferVINN) was
preferred. First, CEREBRUM-7T only segments the brain
into six labels. For instance, CEREBRUM-7T only gener-
ates one label for the basal ganglia. This considerably
limits the usability of CEREBRUM-7T in neuroimaging
studies where the individual subcortical nuclei such as
the thalamus or putamen can be of interest (Rua et al.,
2020; Solomon et al., 2017). The same argument applies
for the amygdala and hippocampus which were unusually
combined with the rest of GM into one single label. Finally,
the segmentation of the cerebellum as one label, which
does not differentiate between cerebellar WM and GM, is
also limiting. At 3T and UHF-MRI, these structures are
even frequently segmented into smaller sub-nuclei for
more precise analyses (Faber et al., 2022; Haast et al.,
2024; Keuken et al., 2013; Morell-Ortega et al., 2024;
Plantinga et al., 2018). Considering that CEREBRUM-7T
used FreeSurfer v6 to obtain individual subcortical nuclei
segments to then recombine them under the basal gan-
glia as one single segment, it raises the question of why
this unusual choice, especially for an UHF-MRI dedicated
tool, was made.

The second issue related to CEREBRUM-7T was the
technical prerequisites in order to use it. Out-of-the-box,
CEREBRUM-7T can only segment images respecting
these four requirements: (1) (0.63 mm)® resolution, (2)
MP2RAGE sequence, (3) matrix size of 256 x 352 x 224,
and (4) images from the Glasgow dataset. Any divergence
from one of these four requirements requires fine-tuning
(Svanera et al.,, 2021). For instance, as discussed in
Henschel et al. (2022), no de facto standard resolution
exists for high-resolution images, and even less at UHF-
MRI, making the first requirement quite constraining in a
similar fashion as it is for SynthSeg with only 1.0 mm? out-
puts. While a fine-tuning process requires less time and
data than a full DL training, the user still faces practical
challenges similar to a full training (i.e., having access to
considerable GPU hardware with a significant amount of
data curation and preparation) in addition to the prerequi-
site of a few, already available, high-quality segmenta-
tions from their specific dataset. The latter can be
interpreted as acircular dependency, where segmentations
are actually required in order to produce segmentations.
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Therefore, in this work, fine-tuning CEREBRUM-7T to
every test dataset including 7T data was considered
unfeasible due to the complexity of producing high-
quality segmentations for these datasets, which exceeded
the realistic scope of this work. Moreover, implementing a
segmentation technique with these requirements in a clin-
ical setting would be extremely challenging.

Ultimately, considering all practical challenges related
to the usage of CEREBRUM-7T on unseen data and its
modest number of labels segmented, using CERE-
BRUM-7T at UHF-MRI is considerably limiting and thus
explains its absence for other test datasets in this work.

4.5. MPI-CBS: GOUHFI and SynthSeg performance
for ultra-high-resolution and inhomogeneous 7T
images

Even when sequences such as MP2RAGE are used to
reduce the impact of inhomogeneities with 1Tx at 7T,
regions such as the cerebellum are frequently affected by
poor contrast-to-noise ratios, as shown by Figure 6. Both
SynthSeg and GOUHFI performed remarkably well to
identify the full cerebellum, with actually a superior iden-
tification of the inferior border of the cerebellum by
SynthSeg for subject 16. However, SynthSeg systemati-
cally and erroneously segmented subarachnoid spaces
on both sides of the cerebellum as cerebellum GM for all
subjects shown. Additionally, for subject 27, SynthSeg
struggled to properly identify and delineate the cortex
inside the temporal lobe for both hemispheres.

In the end, this test dataset demonstrated the clear
limitation of inferring with a model that was trained with a
lower resolution (1.0 mm? or even lower considering the
random down-sampling) in terms of properly segmenting
fine gyrified cortex regions at ultra-high-resolution like
(0.4 mm)3. That resulted in frequent mislabeling of the
cortex with frequent poor overestimation of the extent of
its actual localization (red arrows on Fig. 6).

4.6. UltraCortex: Performance of GOUHFI and
SynthSeg against manual white and gray matter
delineations at 9.4T

Both GOUHFI and SynthSeg showed great accuracy
when compared with manual WM and GM segmentations
with DSC > 0.89 for all three sub-datasets from the Ultra-
Cortex 9.4T dataset. However, GOUHF| was consistently
superior to SynthSeg across all sub-datasets, with
marked superiority for the cortex segmentation with at
least six points of improvement on the median DSC. As
already discussed in previous sub-sections, this is
another example of the limited capacity of SynthSeg to
properly segment highly gyrified cortex regions compared
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with GOUHFI. However, this time, the ground truth is the
gold standard with manual delineations, which gives even
greater credibility to this observation. After extensive
search, this dataset was found to be the only dataset with
manual segmentations of complete ROIs available for
sub-millimeter images acquired at UHF-MRI. It would
have been highly interesting to evaluate GOUHFI against
manually segmented subcortical structures at their native
sub-millimeter resolution, but we were unable to find such
dataset, presumably due to the extensive amount of time
and expertise required to execute such a task.

4.7. STRAT-PARK: Parkinson’s disease volumetry
study at 7T

FastSurferVINN, GOUHFI, and SynthSeg were able to
detect volumetric changes between HC and PDP as
shown in Figure 7. The consistent decrease in volumes
between HC and PDP is in agreement with the literature
for these three ROIs (Geng et al., 2006; Junqué et al.,
2005; Pieperhoff et al., 2022).

However, one difference observed between Fast-
SurferVINN and both GOUHFI and SynthSeg was the
larger median hippocampal volume computed for both
HC and PDP compared with FastSurferVINN (middle plot
in Fig. 7). Ad hoc qualitative observations of the segmen-
tation results indicated that, in certain subjects with
substantially enlarged ventricles, GOUHFI tended to
overestimate hippocampal volume by erroneously includ-
ing portions of the adjacent inferior lateral ventricle inside
the hippocampal delineation. That was not observed for
FastSurferVINN nor SynthSeg. Nonetheless, this hippo-
campal over-segmentation did not appear to impact the
segmentation quality for the amygdala for GOUHFI. This
highlights a potential limitation of the generative model
used by GOUHFI, namely its inability to synthesize
unhealthy brain anatomies where subtle anatomical devi-
ations from healthy brains can impact its performance.
As for any automated segmentation technique, we rec-
ommend the users to visually inspect their segmentation
results. Incorporating a more diverse training dataset
with older subjects could possibly help mitigating this
issue. Ultimately, further clinical validation and analyses
on more diverse and aged clinical cohorts with different
neurological conditions should be done for GOUHFI in
the future, but is currently outside the scope of this work.

4.8. Human Brain Atlas: Ultra-High Resolution at 7T

Reaching ultra-high-resolution levels like for the
(0.25 mm)®> MP2RAGE images from the Human Brain
Atlas dataset allows for the visualization of PVS. Indeed,
PVSs in healthy subjects have diameters between
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0.13 mm and 0.96 mm, with the majority being below
0.5 mm (Zong et al., 2016). GOUHFI and SynthSeg did
not segment any PVS (it was included in WM), whereas
FastSurferVINN segmented most of them and labeled
them as background or cortex. Whether PVS should be
segmented as part of WM is subject to discussion. How-
ever, segmenting them as cortex is incorrect. Especially
at UHF-MRI, researchers should start considering spe-
cific inclusion of PVS in label maps, in particular, as the
number of studies about PVS has drastically increased in
the recent years (Feldman et al., 2018; George et al.,
2021; Kilsdonk et al., 2015; Wardlaw et al., 2020).

The (0.25 mm)? segmentations produced by GOUHFI
showed great delineation of the structures despite the
fact that this resolution was considerably outside the
training resolution of (0.7 mm)3. Conversely, SynthSeg did
not show the same level of delineation for the segmenta-
tions, even if the same up-sampling approach as GOUHFI
was used. These results further demonstrated the clear
improvement in delineation quality by using a higher
training resolution for GOUHFI over SynthSeg. In Fig-
ure 8, one can observe the cortex segmentation created
by SynthSeg, even if up-sampled to (0.25 mm)?, has jag-
ged contours and several regions of overextending the
cortex into the bordering CSF (turquoise arrows). Both
these behaviors were not observed for GOUHFI. The
substantial difference in voxel volume between the out-
put resolution of SynthSeg and the input HBA image
(64 times bigger voxels) made the jagged contours more
apparent, although such artifacts were also present,
albeit less visibly, at other sub-millimeter resolutions.

Indeed, GOUHFI (and SynthSeg) uses an “external
scaling” (exSA) approach to deal with any resolution
instead of the “internal scaling” (or VINN) approach as
proposed in FastSurferVINN. While in Henschel et al.
(2022) the results were consistently better for the VINN
approach over the exSA approach for all datasets shown
in their figure 8 (and the corresponding Table 9), none of
the datasets showed a significantly better performance
statistically, with only minimal improvement of the mean
values compared with the standard deviations. In fact, for
the subcortical structures of the ADNI dataset, the DSC
and ASD values reported in Table 9 were actually higher
for exSA over the VINN approach, which is in disagree-
ment with the results reported in their figure 8. Overall,
the differences reported between the exSA and VINN
approaches were larger for cortical than subcortical
structures (i.e., only two labels, left- and right-cortex,
compared with the 33 other labels in this work).

One technical challenge of using the VINN technique
(like FastSurferVINN) is the substantial increase in
required GPU hardware to segment ultra-high resolu-
tions, like the (0.25 mm)® used here, since the full matrix
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is fed to the network. For instance, the GPU hardware
used in this work was not powerful enough to segment
the (0.25 mm)® images due to VRAM limitations. This
resulted in the required usage of CPU resources to seg-
ment the (0.25 mm)? images using FastSurferVINN, which
increased computation time by a factor of 78. While this
was not an issue for a single subject dataset, using the
VINN approach might be limiting for the increased matrix
size of images with ultra-high resolutions like the HBA
case and is something to consider for larger datasets or
researchers with limited access to GPU hardware.

4.9. Impact of label granularity from 3T to UHF-MRI

As reported in Valabregue et al. (2024), FreeSurfer and
FastSurferVINN have been shown to erroneously include
a substantial portion of the claustrum within the putamen
segmentation. Since both SynthSeg and GOUHFI were
trained using label maps produced by FreeSurfer and
FastSurferVINN, respectively, the same pattern should
have been expected especially due to the higher contrast
at UHF. Surprisingly, as demonstrated in Figure 9,
GOUHFI, while not being able to perfectly delineate the
putamen, did not exhibit as poor delineations of the
putamen as FastSurferVINN, and overall better than
SynthSeg. Nevertheless, when tested on ultra-high reso-
lution and high T1w contrast like for the MPI-CBS and
UltraCortex datasets, GOUHFI performed suboptimally in
a similar fashion as SynthSeg. One additional related
issue, specific to SynthSeg, is its poor delineation of the
cerebral cortex which frequently resulted in the cortex
and putamen being directly segmented next to each
other (cf. yellow arrow on the HCP-YA example).

Moreover, an issue arising from using label maps
defined at the 3T-granularity level is the absence of sub-
field distinction for some subcortical nuclei. Given that
UHF-MRI offers increased resolution and contrast, this
can become a problem for some structures such as the
thalamus, hippocampus, or amygdala. Indeed, especially
for the MPI-CBS and HBA cases with ultra-high resolu-
tion at 7T, different contrasts were visible and present
inside the thalamus label. While this single thalamus label
definition was adequate at 1.5 and 3T, this definition
becomes limiting in some instances at 7T with ultra-high
resolution and contrast as shown here.

Ultimately, the limitations observed for both the claus-
trum and thalamus in FastSurferVINN, SynthSeg, and
GOUHFI underscore the need for label definitions
adapted to the granularity of UHF images. This adapta-
tion, not widely implemented in large-scale automatic
segmentation tools, will be essential in order to accu-
rately capture the sub-field nature of subcortical nuclei.
Promising new tools such as NextBrain (Casamitjana
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et al., 2024) could help implement updated label defini-
tions in the future for automatic UHF segmentation tech-
niques such as GOUHFI.

4.10. Limitations

It is important to acknowledge certain limitations of our
study, such as the limited availability of reference tech-
niques to compare GOUHFI with. As discussed in Sec-
tion 4.4, it would have been preferable if CEREBRUM-7T
would have offered the same out-of-the-box implemen-
tation like FastSurferVINN or SynthSeg (albeit the extra
external up-sampling step that had to be added by the
authors in order to enable comparisons for SynthSeg).
Additionally, it is worth repeating that CEREBRUM-7T
produces only 6 labels, whereas GOUHFI produces 35
(following FreeSurfer/FastSurferVINN label convention).
This allows for a considerably larger number of regions to
use for quantitative analyses with GOUHFI, which is
especially of interest at UHF-MRI. Ultimately, this lack of
reference segmentation techniques at UHF-MRI further
manifests the need for novel techniques to be developed.

A common issue faced by all novel segmentation
techniques is the sparsity of real ground truth segmenta-
tions to use for testing. In this work, manual segmenta-
tions were only available for the UltraCortex dataset and
two labels only. For other quantitative analyses, either
FastSurferVINN segments computed on T1w images or
SynthSeg were used as a “silver standard” or, for CERE-
BRUM-7T, the iGT was used. To the best of our knowl-
edge, no dataset available online offers 3D sub-millimeter
manual segmentations for several subcortical labels at
UHF-MRI. Moreover, producing our own manual seg-
mentations would have been extremely time consuming
and required expertise outside the scope of this work. In
addition, manual segmentations are prone to inter- and
intra-expert variability (Deeley et al., 2011).

Despite GOUHFI being able to segment any contrast
and resolution tested, input images still need to be skull
stripped unlike similar techniques (FastSurferVINN,
SynthSeg, or CEREBRUM-7T). The reasons behind this
requirement are that, first, some training data were
already skull stripped when accessed, and second, seg-
menting extra-cerebral labels as in Billot et al. (2023) was
not easily obtainable for UHF images due to signal inho-
mogeneities outside the brain. Extra-cerebral labels are
required in order to generate synthetic contrasts for the
whole head and such tools are not readily available for
UHF images. In contrast, considering that skull stripping
is a quite common step for neuroimaging pipelines, and
that it has been extensively developed and improved
recently with the arrival of DL-based techniques, we
strongly believe that it should not limit the usability of
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GOUHFI in practice. Indeed, a wide variety of robust and
extensively tested options are freely and easily available
online such as BET, HD-BET, SynthStrip, ROBEX,
ANTsPyNet, and MONSTR (Hoopes et al., 2022; Iglesias
et al.,, 2011; Isensee et al., 2019; S. Roy et al., 2017;
Smith, 2002; Tustison et al., 2021). Nonetheless, possible
errors in skull stripping can impact the quality of the seg-
mentation results and we recommend users to assess
the skull stripping on their images before using GOUHFI
and use a consistent procedure for a given image type.

A potential drawback of GOUHFI, designed for UHF-
MRI, is the fact that cortex parcellation is not performed.
This can be a limitation for researchers using functional
MRI (fMRI) at UHF where its advantages, compared with
3T, have been shown Beisteiner et al. (2011). In addition,
as previously mentioned, all training and most of the test
data in this study consisted of MR images of young
healthy subjects. While the volumetry results on PDP ver-
sus HC indicate that GOUHFI is comparable with Fast-
SurferVINN, they also pointed to some potential problems
of GOUHFI related to enlarged lateral ventricles. A broad
and systematic evaluation of the performance of GOUHFI
in the presence of deviating anatomies and various
pathologies was outside the scope of the current study,
but should be done in a separate follow-up study. Such a
study should also consider a retraining of GOUHFI with
added data from patient studies in the training corpus.
This could, for example, include open-access databases
with neurological disorders such as the OASIS or ADNI
databases (Jack Jr et al., 2008; Marcus et al., 2007).
Originally excluded due to their lower resolutions (i.e.,
1 mm3), these datasets could offer anatomical variations,
like enlarged ventricles, that can be impossible to synthe-
size with the generative model and, thus, improve the
robustness of GOUHFI to a wider range of brain anato-
mies. Ultimately, addressing the limitations related to the
cortex parcellation, lack of anatomical diversity in the
training data, and thorough testing of GOUHFI on clinical
cohorts with pathologies represents the main focus of
future work.

5. CONCLUSIONS

In summary, we propose GOUHFI, a novel DL-based
segmentation technique capable of segmenting MR
images acquired with various contrasts, resolutions, and
even field strengths. GOUHFI was able to segment all six
resolutions and seven contrasts tested in this work. The
usage of synthetic images for training enabled the seg-
mentation of images acquired at 3T, 7T, and 9.4T. At 3T,
when compared with FastSurferVINN, GOUHFI gave an
average DSC of 0.89 for both T1w and T2w images,
demonstrating great performance at lower field strengths
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and superiority over SynthSeg, although developed for
UHF applications. At 7T, GOUHFI was able to segment
five different contrasts and showed similar performance
to CEREBRUM-7T while being substantially more gener-
alizable and practical for the UHF-MRI context. At 9.4T,
GOUHFI demonstrated high agreement with manual seg-
mentations with an average DSC of 0.93 over 12 subjects
versus 0.89 for SynthSeg. Despite SynthSeg exhibiting
decent performance at UHF with high inhomogeneity
resistance, SynthSeg lacked the necessary granularity
required at UHF in its output segmentations, likely due to
the low training resolution. Ultimately, by being trained on
synthetic images randomly generated from only sub-
millimeter label maps, GOUHFI was able to develop con-
trast- and resolution-agnostic capabilities adapted to the
UHF-MRI reality with, in addition, a significant resistance
to noise and signal inhomogeneities, which have been a
major challenge for automatic segmentation at UHF-MRI
until now. For this initial version of GOUHFI, the training
and testing were predominantly conducted using data
from healthy subjects. While this will be addressed in its
next iteration, it is important to consider this factor when
applying GOUHFI to patient cohorts.

DATA AND CODE AVAILABILITY
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APPENDIX A.2. PARAMETERS OF THE GENERA-
TIVE MODEL FOR SYNTHETIC IMAGE CREATION

Appendix Table A.2. Values of the parameters used in

Appendix Table A.1. Label name and index of all this study for the generative model.
structures segmented by GOUHFI. Lh and rh stands for
Left- and Right-Hemisphere, respectively. Parameter Value
Segmented structure Labelindex @&, -20

b 20
Cerebral white matter (Ih) 1 a"” 08
Cerebral cortex (lh) 2 bSC 19
Lateral ventricle (Ih) 3 sc .
Inferior lateral ventricle (Ih) 4 8, -0.015
Cerebellar white matter (lh) 5 bsh 0.015
Cerebellar cortex (Ih) 6 a, -30
Thalamus (lh) 7 b, 30
Caudate (lh) 8 o J 4.0
Putamen (Ih) 9 a 0
Pallidum (Ih) 10 b 255
3rd-ventricle 11 a 0
4th-ventricle 12 °
Brain stem 13 EG 859
Hippocampus (lh) 14 g .
Amygdala (Ih) 15 ol 0.4
CSF 16 s None
Accumbens (Ih) 17 b None
Ventral DC (Ih) 18 a, None
Choroid plexus (Ih) 19 b, None
Cerebral white matter (rh) 20
Cerebral cortex (rh) 21 Inteqsity parameters assume inputs in the [O: 255] interval.,
Lateral ventricle (rh) 20 rotations are expresseq in degrees with spatial measures in
Inferior lateral ventricle (rh) 23 m||||meters. More details about these parameters are provided in
Cerebellar white matter (rh) 24 Billot et al. (2023).
Cerebellar cortex (rh) 25
Thalamus (rh) 26
Caudate (rh) 27
Putamen (rh) 28
Pallidum (rh) 29
Hippocampus (rh) 30
Amygdala (rh) 31
Accumbens (rh) 32
Ventral DC (rh) 33
Choroid plexus (rh) 34
WM-hypointensities 35
Extra-cerebral 36*

*While required to generate the synthetic images used for training,
the extra-cerebral label is not segmented by GOUHFI.
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APPENDIX A.3. FREESURFER VERSUS
FASTSURFERVINN LABEL MAPS FOR
(0.7 MM)2 3T MPRAGE IMAGES

(0.7mm)® Tiw FreeSurfer FastSurferVINN
MPRAGE (0.7mm)? label map  (0.7mm)? label map

(S3777 hov

Appendix Fig. A.1. Comparison in the three anatomical planes of the output label maps produced by FreeSurfer
(middle column) and FastSurferVINN (right column) for the same 3T (0.7 mm)® T1w MPRAGE. Despite both label maps
being at the same resolution of (0.7 mm)3, a difference in delineation quality is easily observable between FreeSurfer and
FastSurferVINN, with the latter producing more refined delineations of anatomical structures. Therefore, FastSurferVINN
was preferred for the training label maps for GOUHFI.
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