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Abstract
Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB) are neurodegenerative disorders with overlapping clinical 
features, making differential diagnosis challenging. The AQEE and GGEE peptides, derived from the proVGF neuroprotein, 
have emerged as potential cerebrospinal fluid (CSF) biomarkers for dementia. Indeed, we previously observed a reduction 
in AQEE-10 levels using selected reaction monitoring (SRM) and GGEE levels using enzyme-linked immunosorbent assay 
(ELISA) in a cohort of DLB patients compared to both controls and AD patients. To better investigate the diagnostic utility 
of these peptides, we analyzed CSF samples from both the original cohort and a newly recruited cohort. The new cohort 
(cohort 1) included patients, from Ulm University Hospital, with Parkinson’s disease dementia (PDD) and DLB (combined 
as PDD/DLB; n = 18), and AD (n = 19). The previously analyzed cohort (cohort 2), from the Amsterdam University Medical 
Center, included DLB (n = 44), AD (n = 20), and cognitively healthy controls (n = 22). AQEE-10 levels were quantified by 
multiple reaction monitoring (MRM) in cohort 1 and by ELISA in both cohorts. GGEE levels were measured by ELISA in 
cohort 1 to corroborate and extend previous findings. MRM-based analysis revealed a significant reduction of AQEE-10 levels 
in DLB compared to both controls and AD (p < 0.05; ROC-AUC: 78% and 82%, respectively). This finding was confirmed 
by ELISA, for both AQEE-10 and GGEE peptide levels, along with a positive correlation between their concentrations. 
These results support AQEE-10 and GGEE as promising peptide biomarkers for distinguishing DLB from other dementia.
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Introduction

Alzheimer’s disease (AD) and dementia with Lewy bod-
ies (DLB) are among the most common forms of neuro-
degenerative dementia. Although each condition is char-
acterized by distinct pathological features, their clinical 

manifestations often overlap, making differential diagno-
sis challenging [1]. This highlights the urgent need for 
more accurate and reliable diagnostic tools capable of 
distinguishing between dementia subtypes. Neuropep-
tides, which are small protein-like molecules secreted by 
neurons, have emerged as promising fluid-based biomark-
ers for neurodegenerative diseases. Once secreted, these 
peptides can diffuse into the bloodstream or cerebrospinal 
fluid (CSF), making them accessible for diagnostic analy-
sis [2]. Among these, proVGF—a precursor protein stored 
in dense-core vesicles within neurons—is processed into 
multiple bioactive peptides of varying molecular weights 
[3]. Peptides derived from VGF, particularly those con-
taining AQEE and GGEE motifs, have been proposed as 
candidate biomarkers for neurodegenerative dementias. 
Our earlier studies showed reduced levels of proVGF 
C-terminal peptides—potentially including AQEE-30—
in post-mortem brain cortices from AD patients compared 
to cognitively normal controls [4]. Similarly, lower con-
centrations of AQEE-10, a truncated form of AQEE-30, 
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were detected in CSF samples from AD patients relative 
to non-demented individuals [5]. The GGEE peptide has 
also been implicated in AD, with decreased CSF levels 
in affected individuals compared to healthy controls [6]. 
These findings indicate that levels of both AQEE and 
GGEE peptides are reduced in AD. However, in our pre-
vious studies, we demonstrated that DLB patients could 
be reliably distinguished from both AD patients and con-
trols by a significant decrease in the levels of AQEE-10 
measured using selective mass spectrometry (SMR) and 
GGEE peptides (quantified using enzyme-linked immu-
nosorbent assay) [7–9]. It is important to note, however, 
that the SMR-based measurement of AQEE-10 has not 
yet been validated by an independent analytical method. 
Regarding their biological function, AQEE-30 has been 
implicated in synaptic plasticity [10], neuroprotection 
[11], and nociceptive processing within the spinal cord 
[12]. In contrast, the role of GGEE peptides in neuronal 
function remains largely unclear. Given the proposed neu-
ronal functions of the AQEE peptides, our first aim was 
to more specifically assess AQEE-10 as a potential bio-
marker for DLB. Our second aim was to strengthen the 
evidence for GGEE as a diagnostic biomarker by expand-
ing the original study cohort. To achieve these goals, we 
employed two complementary techniques for AQEE-10 
quantification: multiple reaction monitoring (MRM), one 
of the most sensitive methods for peptide measurement, 
and enzyme-linked immunosorbent assay (ELISA). In par-
allel, we measured GGEE levels using ELISA and evalu-
ated their correlation with AQEE concentrations.

Materials and methods

Subjects involved in the study

This study includes two independent cohorts of subjects 
(Table 1). CSF samples were collected during the diag-
nostic workup of patients at the Department of Neurology, 
Ulm University Hospital, Ulm, Germany (Cohort 1), and at 
Amsterdam University Medical Center (AUMC), Amster-
dam, Netherlands (Cohort 2). Cohort 1 comprised patients 
diagnosed with AD (n = 19), and DLB/Parkinson's disease 
dementia (grouped as DLB/PDD; n = 18). It also included 
age-matched control subjects (n = 27) who did not present 
with neurodegenerative conditions but underwent CSF col-
lection to exclude neuroinflammatory disorders. Control 
diagnoses included facial palsy (n = 11), tension headache 
(n = 6), trochlear paresis (n = 2), intoxication, physical and 
mental stress/prostate carcinoma, migraine, ocular myosi-
tis, pansinusitis, polyneuropathy/restless leg syndrome, right 
leg pain syndrome, and vertigo. Patients in the dementia 
groups were diagnosed according to established clinical 
criteria [13–16]. CSF levels of total tau, phosphorylated tau 
at threonine 181 (pTau181), and amyloid-beta 42 (Aβ42) 
were measured using ELISA kits from Fujirebio Germany 
GmbH (Hannover, Germany) during routine clinical evalu-
ation. Only patients with probable DLB were included. The 
study was approved by the ethics committee of Ulm Univer-
sity (approval no. 20/10). Cohort 2 included CSF samples 
from patients with AD (n = 20) and DLB (n = 44), as well as 
age-matched non-neurodegenerative controls (n = 22). CSF 

Table 1   Patient characteristics

Controls are patients without dementia or other neurodegenerative diseases; AD, Alzheimer's disease; 
PDD, Parkinson's disease dementia; DLB, dementia with Lewy bodies; Aβ1-42, amyloid β-peptide (1–42); 
p-Tau, phosphorylated Tau; α-synuclein, alpha-synuclein. Data are presented as median [min–max] or n 
(%); pg/mL: picograms/milliliters

Controls AD PDD/DLB

COHORT 1 (n = 82)
 Patient (n) 27 19 18
 Female (n, %) 9 (33%) 7 (37%) 5 (28%)
 Age 69 [48–82] 74 [65–81] 73 [62–82]
 Aβ1-42 (pg/mL) 1290 [763–1772] 438 [287–689] 613 [369–1154]
 Tau (pg/mL) 286 [217–675] 812 [421–1773] 364 [183–903]
 p-Tau (pg/mL) 37 [20–79] 72 [20–236] 61 [44–110]

COHORT 2 (n = 86)
 Patient (n) 22 20 44
 Female (n, %) 4 (18%) 2 (10%) 5 (11%)
 Age 63 [55–74] 65 [54–76] 67 [54–78]
 Aβ1-42 (pg/mL) 1040 [785–1335] 586 [440–700] 780 [436–1404]
 Tau (pg/mL) 194 [79–355] 596 [314–1776] 292 [68–914]
 p-Tau (pg/mL) 39 [19–52] 88 [57–252] 47 [16–158]
 α-synuclein (pg/mL) 1465 [697–2717] 1805 [798–3524]
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concentrations of tau, pTau181, Aβ42, and α-synuclein were 
assessed using ELISA kits as part of standard clinical pro-
cedures. Demographic clinical characteristics and approve-
ment by the ethics committee of cohort 2 were previously 
described [7]. All CSF samples were obtained via lumbar 
puncture, centrifuged, and stored within 2 h at − 80 °C in 
polypropylene tubes.

MRM analysis of AQEE‑10

The MRM method for quantifying the AQEE-10 in CSF 
has been described previously [7, 17] In brief, CSF sample 
preparation involved reduction and alkylation, followed by 
overnight enzymatic digestion at 37 °C using a trypsin/LysC 
mixture. The resulting peptides were fractionated using 
strong cation exchange (SCX) STAGE Tips. Peptide sepa-
ration was performed on an Eksigent MicroLC200 chroma-
tographic system, and analysis was carried out on a QTRAP 
6500 mass spectrometer (AB Sciex, Darmstadt, Germany). 
The AQEE-10 peptide (VGF586–595) was quantified (in 
cohort 1) using MRM with the following transitions: for 
the endogenous peptide, 581.3 → 962.4 (y8), 581.3 → 833.4 
(y7), and 581.3 → 704.3 (y6); and for the isotopically labeled 
standard (heavy peptide), 586.3 → 972.4 (y8), 586.3 → 843.4 
(y7), and 586.3 → 714.3 (y6) (Supplemental materials 
Table S1). The performance characteristics of the MRM 
method are summarized in Table 2. All MRM data were 
processed and evaluated using Skyline software [18] and 
results were reported as abundance ratios between endog-
enous peptides and their corresponding isotopically labeled 
internal standards (light/heavy, L/H ratio).

Competitive ELISA

For the AQEE immunoassay, a polyclonal anti-AQEE anti-
body was generated in rabbits against the AQEE-10 pep-
tide (VGF586–595), conjugated to bovine thyroglobulin 
via an additional C-terminal cysteine. The antibody was 
affinity-purified by incubation with the immunogen cova-
lently immobilized on SulfoLink Coupling Resin (Thermo 
Fisher Scientific), followed by extensive washing with 
phosphate-buffered saline (PBS, 0.5 M), and elution was 

performed using 1 M glycine–HCl buffer (pH 2.5). Details 
of the AQEE antibody production and assay validation have 
been previously reported [19]. The GGEE (VGF373-417) 
immunoassay was performed as previously described [7]. 
For ELISA measurements, microtiter plates were coated 
with the respective peptides (AQEE-10 or GGEE-9) diluted 
in carbonate/bicarbonate buffer (pH 9.6), then blocked using 
PBS-Tween 20 (0.01 mol/L phosphate buffer, pH 7.2–7.4, 
0.15 mol/L NaCl, 0.5 g/L Tween 20) supplemented with 
normal donkey serum (90 mL/L), aprotinin (20 nmol/L), and 
ethylenediaminetetraacetic acid (EDTA: 1 g/L). Plates were 
incubated at room temperature for 3 h with a mixture of the 
primary antibody (diluted in blocking buffer) and serial dilu-
tions of either the standard peptide (0.005–500 pmol/mL) 
or the samples. Following incubation, plates were washed 
and treated sequentially with a biotinylated secondary anti-
body (1 h, 1:10,000 dilution; Jackson ImmunoResearch, 
West Grove, PA, USA), a streptavidin–peroxidase conjugate 
(30 min, 1:10,000; Biospa, Milan, Italy), and tetramethylb-
enzidine (TMB; X-tra, Kem-En-Tec, Taastrup, Denmark). 
The enzymatic reaction was stopped with 1 M HCl, and 
absorbance was measured at 450 nm using a multilabel plate 
reader (Chameleon, Hidex, Turku, Finland). Antibody dilu-
tions were 1:10,000 for GGEE assay and 1:8,000 for AQEE 
assay.

Statistical analysis

Statistical analyses were performed using GraphPad Prism 
v.8 (GraphPad Software, San Diego, CA, USA), R software 
v. 4.1.0, and StatistiXL Software (www.​stati​stixl.​com). 
For MRM and ELISA data, the normality of distribution 
was tested with Shapiro–Wilk, and the presence of outli-
ers with the Grubbs test. CSF levels of VGF peptides were 
not normally distributed; nonparametric tests were used 
for any of the analyses. Groups were compared using the 
Kruskal–Wallis test, followed by Dunn’s post hoc test with 
Bonferroni correction for multiple comparisons. Correla-
tion analyses were performed using Spearman’s rank cor-
relation coefficient. Receiver operating characteristic (ROC) 
curves were generated in R v. 4.1.0 by using the packages 

Table 2   MRM assay 
performance

2 h RT—incubated for 2 h at room temperature; 1 cycle—one freeze–thaw cycle; 3 cycles—three freeze–
thaw cycles; 5 cycles—five freeze–thaw cycles. n: number of replicates

Protein name Stability test
(n = 2)

Dilution linearity
(n = 2)

Intra-assay 
variation
(n = 5)

AQEE 2 h RT: 100.7–106.7 1 to 2: 88.8—103.6 2.2
1 cycle: 94.1–104.9 1 to 4: 81.8—88.3
3 cycles: 95.4–97.7 1 to 8: 85.9—90.6
5 cycles:102.3–97.4

http://www.statistixl.com
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pROC and nnet. A p-value < 0.05 was regarded as statisti-
cally significant.

Results

AQEE‑MRM, AQEE‑ELISA, and GGEE‑ELISA in cohort 1

The validated MRM method was applied to quantify AQEE-
10 levels in cohort 1 (Fig. 1a), which included 27 control 
subjects, 19 patients with AD, and 18 with PDD/DLB. All 
samples were analyzed in a single analytical run with an 
intra-assay CV in QC (quality control) samples of 7.4% 
(n = 6). Data were unavailable (due to technical reasons 
or sensitivity) for 13 individuals: 3 controls, 2 AD, and 
3 PDD/DLB patients. AQEE-10 levels were significantly 
reduced in the PDD/DLB group (0.67 [0.5–0.9] L/H ratio, 
median [interquartile range]) compared to both controls 
(1.13 [0.9–1.5]; p = 0.009) and AD patients (1.10 [0.9–1.6]; 
p = 0.009). PDD/DLB patients exhibited significantly lower 
AQEE-10 levels compared to controls, and these patients 
had also less levels of AQEE-10 than AD patients. The 
cohort 1 was also analyzed for both AQEE and GGEE 
levels (Fig. 1b, c). AQEE measurements were unavailable 
for 6 subjects (1 AD, and 5 PDD/DLB), while GGEE data 
were missing for 4 PDD/DLB patients Unavailable/missing 
values were statistical outliers. AQEE and GGEE peptide 
levels were significantly lower in patients with PDD/DLB 

(AQEE: 0.01 [0.008–0.05] pmol/mL, median [interquartile 
range]; GGEE: 7.3 [5.1–12.4] pmol/mL) compared to con-
trols (AQEE: 0.13 [0.05–0.19] pmol/mL p = 0.003; GGEE: 
18.3 [12.8–24.4] pmol/mL, p = 0.0007) and AD patients 
(AQEE: 0.12 [0.07–0.17] pmol/mL, p = 0.04; GGEE: 20.8 
[9.9–25.7] pmol/mL, p = 0.006). In conclusion, PDD/DLB 
patients exhibited significantly reduced levels of both AQEE 
and GGEE peptides compared to cognitively normal controls 
and AD patients, supporting the findings obtained through 
MRM.

AQEE‑ELISA in cohort 2

Since cohort 2 was alredy used for AQEE-SMR and GGEE-
ELISA analysis, this cohort underwent the AQEE- ELISA 
only (Fig. 2). The AQEE peptide levels were significantly 
lower in patients with PDD/DLB (0.05 [0.02–0.08] pmol/
mL) compared to controls (0.11 [0.07–0.18] pmol/mL, 
p = 0.009) and AD patients (0.1 [0.06–0.17] pmol/mL, 
p = 0.04). In conclusion, PDD/DLB showed significantly 
decreased levels of AQEE peptides relative to cognitively 
normal controls and AD patients.

Correlation analyses

The levels of the two VGF-derived peptides, measured using 
either ELISA or MRM, were correlated with each other 
within each diagnostic group. Additionally, correlations 

Fig. 1   AQEE and GGEE peptide levels in cohort 1. a AQEE levels 
measured by MRM in cohort 1 (data available for 24 controls, 17 AD, 
and 15 PDD/DLB patients). Boxplots indicate the median (line) and 
the range (whiskers showing minimum and maximum values). Box-
plots represent the light-to-heavy (L/H) peptide ratio obtained from 
MRM analyses. b AQEE levels measured by ELISA in cohorts 1 
(data available for 27 controls, 18 AD, and 13 PDD/DLB patients). 
c GGEE levels measured by ELISA in cohort 1 (data available for 

27 controls, 19 AD and 13 PDD/DLB patients). Boxplots indicate 
the median (line) and the range (whiskers showing minimum and 
maximum values). Statistical comparisons were performed using the 
Kruskal–Wallis test and Dunn’s multiple comparisons test. AD, Alz-
heimer’s disease; PDD/DLB, Parkinson’s disease dementia/dementia 
with Lewy bodies; Control, non-neurodegenerative controls. Pmol/
mL, picomoles/milliliters. * p < 0.05; ** p < 0.005; *** p < 0.0005



Journal of Neurology (2025) 272:745	 Page 5 of 8  745

were assessed between each VGF peptide and misfolded 
protein biomarkers—including pTau, total Tau, Aβ1-42, and 
α-synuclein—within the patient groups (Table 3). Correla-
tion results for all patients combined are also presented in 
supplementary materials, Figs. S1 and S2 for cohorts 1 and 
2, respectively. The analysis of combined patients revealed 
a significant positive correlation between the two peptides 
measured by ELISA, as well as between AQEE-MRM and 
both GGEE and AQEE levels measured by ELISA (sup-
plementary materials, Fig. S1). Furthermore, in cohort 2, 
AQEE levels measured by ELISA were positively corre-
lated with Tau and pTau, while a strong correlation between 
AQEE (ELISA) and α-synuclein was observed in patients 
with PDD/DLB (supplementary materials, Fig. S2).

Receiver operating characteristic curve analyses

To assess whether AQEE and GGEE peptide levels could 
effectively differentiate PDD/DLB patients from healthy 
controls and other dementia subtypes (AD), receiver oper-
ating characteristic (ROC) curve analyses were conducted 
for cohort 1 (Fig. 3a,b). For Cohort 2, ROC curve analysis 
was performed using only AQEE levels (Fig. 3c,d), as data 
for GGEE and SMR-based measurements had already been 
published previously [7]. The highest area under the curve 
(AUC) value was observed when distinguishing AD from 
PDD/DLB using AQEE-MRM, with an AUC of 0.82 and 

Fig. 2   AQEE-ELISA levels in cohort 2. AQEE levels measured by 
ELISA in cohort 2 (data available for 22 controls, 20 AD and 44 
DLB). Boxplots indicate the median (line) and the range (whiskers 
showing minimum and maximum values). Statistical comparisons 
were performed using the Kruskal–Wallis test and Dunn’s multiple 
comparisons test. AD, Alzheimer’s disease; DLB, dementia with 
Lewy bodies; Control: non-neurodegenerative controls. Pmol/mL, 
picomoles/milliliters. * p < 0.05; ** p < 0.005; *** p < 0.0005

Table 3   Correlations between 
CSF biomarkers

Associations were assessed with Spearman correlation coefficient (ρ), p-values in bold are < 0.05. AD: Alz-
heimer's disease; PDD: Parkinson's disease dementia; DLB: dementia with Lewy bodies; bvFTD: behavio-
ral variant frontotemporal dementia; Aβ1-42: amyloid β-peptide (1–42); p-Tau: phosphorylated Tau; α-syn: 
alpha-synuclein

Total group Controls AD PDD/DLB

ρ p ρ p ρ p ρ p

Cohort 1
AQEE-ELISA vs AQEE-MRM 0.41 0.003 0.26 0.22 0.01 0.98 0.53 0.12
GGEE-ELISA vs AQEE-MRM 0.88 1.6*10–9 0.87 1.2*10–12 0.77 0.0006 0.95 1.1*10–20

GGEE-ELISA vs AQEE-ELISA 0.50 8.4*10–5 0.24 0.24 0.38 0.11 0.58 0.038
AQEE-MRM vs Tau 0.33 0.059 0.74 0.047 0.31 0.23 0.76 0.037
AQEE-MRM vs p-Tau 0.06 0.75 0.31 0.46 0.19 0.47 -0.5 1.0
AQEE-MRM vs Aβ 1–42 0.027 0.88 0.31 0.46 -0.17 0.51 0.14 0.74
AQEE-ELISA vs Tau 0.15 0.36 -0.34 0.38 0.13 0.6 0.71 0.027
AQEE-ELISA vs p-Tau -0.002 0.99 0.024 0.97 0.19 0.45 0.66 0.23
AQEE-ELISA vs Aβ 1–42 0.13 0.44 -0.18 0.65 0.20 0.43 -0.42 0.24
GGEE-ELISA vs Tau 0.38 0.019 0.67 0.059 0.30 0.21 0.79 0.009
GGEE-ELISA vs p-Tau 0.26 0.15 0.33 0.38 0.31 0.21 0.7 0.23
GGEE-ELISA vs Aβ 1–42 0.17 0.31 0.63 0.08 0.14 0.57 0.08 0.83
Cohort 2
AQEE-ELISA vs Tau 0.22 0.049 0.7 0.0007 0.29 0.23 0.46 0.002
AQEE-ELISA vs p-Tau 0.34 0.001 0.62 0.003 0.53 0.017 0.54 0.0002
AQEE-ELISA vs Aβ1-42 0.04 0.69 0.44 0.046 0.077 0.75 -0.08 0.63
AQEE-ELISA vs α-Syn 0.44 0.0003 0.72 0.001 - - 0.63 9.4*10–6
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when comparing controls with PDD/DLB using GGEE-
ELISA (AUC = 0.83).

Discussion

In the present study, our main finding is that, among the 
dementia subtypes investigated, patients with PDD/DLB 
exhibited significantly reduced CSF levels of the AQEE-10 
peptide compared to cognitively normal controls and AD 
patients, as measured by both MRM and competitive ELISA 

using an antibody specifically produced against the AQEE-
10. Furthermore, using ELISA, we identified a significant 
correlation between GGEE and AQEE levels, confirming 
our previous observations of reduced GGEE in PDD/DLB 
patients [7], In addition to the differences observed between 
PDD/DLB patients and controls, we also detected distinctions 
among the dementia subtypes (AD and PDD/DLB). Since the 
exogenous AQEE-30 peptide acutely increases synaptic charge 
in a dose-dependent manner [10], the reduction in AQEE 
levels we observed may reflect a corresponding decrease in 
this synaptic activity, although targeted studies are needed to 

Fig. 3   ROC curve analyses. 
Receiver operating charac-
teristic (ROC) curves were 
generated using cohort 1 and 
cohort 2. The area under the 
curve (AUC) is shown for each 
comparison. DLB: dementia 
with Lewy bodies; PDD: Par-
kinson’s disease dementia; AD: 
Alzheimer’s disease
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elucidate AQEE-specific function in the context of dementia. 
Previous studies have reported reduced levels of AQEE [5] and 
GGEE [5, 6] peptides in the CSF of AD patients using mass 
spectrometry. In contrast, our results did not show reduced 
AQEE or GGEE levels in AD patients relative to controls. 
This discrepancy may be attributable to differences in clini-
cal and diagnostic characteristics across cohorts. Notably, our 
patient cohort was diagnosed according to established clinical 
criteria [13–16] but also underwent comprehensive CSF bio-
marker profiling—including Tau, pTau181, and Aβ42 levels 
as shown in Tabe 1. This level of biomarker confirmation was 
often lacking in the previous mentioned studies in which the 
full panel of biomarkers that we analysed, were not measured 
but rather only one of these [5, 6]. The correlation between 
our peptides and alpha-synuclein in PDD/DLB was expected, 
while the ones with pTau and Tau may suggest that VGF pep-
tides’ expression might be linked to specific neurodegenerative 
processes, particularly those involving tau pathology. How-
ever, the biological significance of these correlations remains 
unclear at this stage and must be interpreted with caution. Our 
findings are strengthened by the use of two orthogonal ana-
lytical methods (MRM and ELISA) and by replication in two 
independent cohorts. Indeed, cohort 2 was previously used in 
a published study [7] for SRM, using AQEE as a standard, as 
well as for GGEE-based ELISA. In that study, AQEE levels 
were not assessed by ELISA—only the GGEE-ELISA assay 
was performed. Interestingly, the VGF levels obtained via both 
SRM and GGEE-ELISA in that previous study were compa-
rable to those observed in the current study using cohort 1 
with MRM and GGEE-ELISA, with similarly decreased levels 
in DLB compared to AD and control groups. Moreover, the 
AQEE levels measured in cohort 2 in the present study showed 
a reduction similar to that observed in cohort 1. In conclusion, 
these findings support the comparability of cohort 1 and cohort 
2 (supplementary materials, Table 2). However, the explora-
tory nature of this study presents certain limitations, the most 
significant being the sample size. Furthermore, future stud-
ies should employ more sensitive and specific immunoassays 
capable of reliably distinguishing AQEE-10 from the other 
VGF-derived peptides given that several AQEE peptides may 
exist beyond that we identified (i.e. AQEE-30 or the proVGF 
itself) because the anti-AQEE antibody potentially recognizes 
all peptides containing AQEE sequence. Indeed, the scenario 
of the modulation of specific VGF peptides under pathologi-
cal conditions appears highly complex. For example, a recent 
study in multiple sclerosis (MS) patients reported elevated 
serum AQEE levels compared to healthy controls, whereas 
GGEE levels remained unchanged [20]. These findings sug-
gest that VGF-derived peptides may be differentially regulated 
even within a single pathological condition. This complexity 
is further exemplified in neurodegenerative diseases such as 
amyotrophic lateral sclerosis (ALS), where patients in early 
stages exhibit elevated plasma levels of certain VGF-derived 

"NERP peptides" [21] while others—such as TLQP pep-
tides—are decreased in both early and late disease stages, 
alongside further reductions in advanced stages of peptides 
derived from the C-terminal region of proVGF [22]. In con-
clusion, our consistent findings using highly specific MRM, 
validated by independent ELISA measurements, highlight 
AQEE as a novel and promising VGF-derived biomarker for 
identifying PDD/DLB and distinguishing it from AD. Given 
that GGEE was also validated as a biomarker for DLB, we pro-
pose that both peptides should be systematically investigated in 
future large-scale, longitudinal studies. The discovery and vali-
dation of such novel diagnostic biomarkers may substantially 
enhance disease classification and facilitate the development 
of more personalized therapeutic strategies.
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tary material available at https://​doi.​org/​10.​1007/​s00415-​025-​13441-1.
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