


phenomenon known as collinearity), or a confounding vari-

able may obscure the true relationship between predictors

and dependent variables, potentially leading to unreliable

results.

Beyond this traditional approach, literature therefore

increasingly treats relations between variables from a

network perspective. A popular example of this perspective

is the field of brain connectivity, which studies the network

of relationships between different brain regions.5 Brain con-

nectivity has three subfields: structural, functional, and

effective connectivity. Structural connectivity uncovers

the physical relations among brain regions,6 for instance

using diffusion tensor imaging.7 Functional connectivity

involves the covariance, correlation, or other statistical

dependency among brain regions.8 Effective connectivity

discovers the causal relations among brain regions9; a

common statistical technique to study effective connectivity

is Dynamic Causal Modeling.10

The present article studies the network of associations

between regional gray matter volume and glucose metabol-

ism, but goes beyond the standard brain connectivity approach

by also including demographic factors, cognitive scores, and

the global amyloid-beta accumulation. In total, we included

19 features that have been shown to play a role in the patho-

genesis of AD. Network models between these variables are

not new in AD literature and are predominantly causal of

nature. A popular tool for causal inference is Structural

Equation Modeling (SEM), a family of statistical techniques

that, given the causal relations between variables, can estimate

the effect size of each relationship.11 Mediation analysis is

part of the SEM family and studies the contribution of a

third variable to the causal dependency between two other

variables. It is a common technique in AD research.12–14

Other applications of SEM in AD include path analysis,15

factor analysis,16 and structural regression.17 For causal infer-

ence in AD research, there are various alternatives to SEM

including Structural Causal models,18 System Dynamic

models,19 and Dynamic Causal Modeling.10

This article considers undirected graphs. The resulting rela-

tions are therefore not causal of nature, as opposed to the

directed and causal relations studied by SEMs. Undirected

graphs have three main advantages over classical SEMs.

First, undirected networks allow cycles. Often a variable A

causes B and B causes A. We refer to such relation as a

cycle. Cycles are common in AD pathology. SEMs,

however, assume the network is acyclic and are therefore

not suitable for inference on cyclic relations. Second, causal

relations are hard to detect and generally need large sample

sizes and longitudinal data. These data are costly to obtain.

Inference on undirected networks is possible with smaller

sample sizes and does not require longitudinal data. Lastly,

undirected networks do not require prior knowledge about

the structure of the graph. They can, therefore, be used

without limitations on the structure. SEMs do need a causal

relation graph as input. SEMs are able to refine the causal

structure of this input graph, but these refinements suffer

from a poor performance.18 SEMs are therefore often

restricted to variables and relations of which the causal struc-

ture is available a priori. Undirected networks, like the graph-

ical model estimated in this article, can facilitate to form

hypotheses about the structure of a causal network. Thus,

they have the potential to improve the performance of

SEMs and other causal inference methods.

Formally, in an undirected network, an edge between

two variables represents some measure of statistical

dependency. A common choice for this dependency is the

Pearson’s correlation or the covariance. However, these

metrics can lead to spurious associations by overlooking

confounding or mediating factors. Ideally one wants a cor-

relation that is corrected for such factors. Such a correlation

exists and is called the partial correlation. Like the Pearson

correlation, the partial correlation takes on a value in the

range from −1 to 1. Under the assumption that all variables

are multivariate normally distributed, a zero partial correl-

ation implies conditional independence. Two variables A

and B are conditionally independent when, given all other

variables, there is no relation between A and B. Or, put dif-

ferently, if we keep all other variables fixed, knowing the

value of variable A, does not give any information about

the value of variable B. One can depict conditional depend-

encies in an undirected graphical model, where nodes

denote random variables and an edge between two nodes/

variables is included if and only if the variables are condi-

tionally dependent.20,21 Such graphical models depict con-

founding and mediating pathways between large numbers

of variables in one figure. They constitute, therefore, a

powerful tool to uncovering the complex associations

involved in AD, as previously demonstrated.22

Conditional dependencies, partial correlations, and

graphical models are commonly estimated using a frequen-

tist approach. This approach can estimate partial correla-

tions and predict whether any two variables are

conditionally dependent or not. In the field of brain connect-

ivity in AD, there are two articles applying frequentist

graphical models to uncover conditional dependencies

between brain region-specific gray matter volume and

glucose uptake.23,24 Although frequentist approaches are

relatively straightforward, they are not able to provide any

uncertainty around the estimated conditional dependencies

and partial correlations, a concept referred to as model

uncertainty. To overcome this limitation, we employed a

Bayesian approach, which offers a key advantage: it not

only estimates conditional (in)dependence and partial corre-

lations but also quantifies the uncertainty of these estimates.

Quantifying this uncertainty is important. Conditional

independence, and statistical associations in general, are

not black and white; based on the data, relations can be

opaque. Consider, for example, the ambiguous role that

sex plays in the pathology of AD.25 When answering the

question “Are two variables conditionally dependent?”, a
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simple yes or no might overlook the complexity of the rela-

tion. Instead, the answer “There is conditional dependence

with 75%”, gives more color. Uncertainty also allows

researchers to state that, based on the data, it is not clear

if some variables are conditionally dependent.

Quantifying uncertainty becomes even more pivotal if con-

ditional dependence graphs are used as a starting point to

develop a causal model, in which mistakes in the starting

graph might trickle down to spurious causal results.18

Despite the advantage that model uncertainty provides,

the Bayesian approach is still uncommon in the field of

AD research. This is largely due to the dated notion that

the Bayesian approach is complex and inefficient.

Although this claim is historically true, recent advance-

ments have made Bayesian methods more computationally

efficient,26,27 making their application to AD research pos-

sible. For example, Bayesian methods have been applied to

estimate conditional dependence between brain regions22,28

and to determine the uncertainty of functional connectivity

estimates.29 All these applications, however, used so-called

Gaussian graphical models (GGMs). In GGMs, all variables

are assumed to follow a multivariate normal distribution. In

the present study, we employed Gaussian copula graphical

models (GCGMs). This methodology enabled the integra-

tion of non-normal variables, such as discrete (e.g.,

amyloid-beta levels), binary (e.g., sex) and continuous vari-

ables (e.g., MRI, FDG-PET).

This study presents a Bayesian approach to GCGMs. Our

methodology has three capabilities. (i) the estimation of an

undirected network depicting the conditional dependencies

and partial correlations between variables, (ii) the quantifica-

tion of the uncertainty of these estimates and, (iii) the inclu-

sion of all types of variables whether normally distributed

or not. Bayesian GCGMs have been successfully applied in

other domains,30–32 but remain, to the best of our knowledge,

unexplored in the AD domain.

The application of GCGMs to AD, allowed us to study the

conditional dependence structure among 19 relevant features.

Specifically, our primary objective was to identify the condi-

tional dependence pathways between demographic variables

and cognition (i.e., memory and executive function scores),

and between neuro-imaging variables (i.e., gray matter

volume, glucose uptake along with amyloid-beta levels) and

cognition. Furthermore, we explored the conditional depend-

ency pathways through which demographic variables influ-

ence gray matter volume and glucose uptake, and

investigated the conditional dependencies between brain

region-specific volume and glucose metabolism.

Methods

Subjects

We obtained the data for this study from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI), which provides

a public database for AD research including clinical, neuro-

psychological, neuroimaging, and biomarker data. A com-

plete description of the ADNI and up-to-date information

is available at https://adni.loni.usc.edu. For this study, we

selected the baseline examinations of the ADNI-GO and

ADNI-2 phases. The final dataset included 1 022 partici-

pants selected based on the availability of concurrent

T1-weighted structural MRI, FDG-PET, amyloid-sensitive

AV45-PET data, neuropsychological assessments, and

blood-based APOE4 genotyping.

After initial quality control and data preparation, the final

sample included 345 cognitively normal control subjects

(CN), 297 patients with amnestic early mild cognitive

impairment (EMCI), 205 patients with amnestic late mild

cognitive impairment (LMCI), and 175 patients with AD.

We included two cognitive composite scores assessing

memory (ADNI-MEM) and executive function

(ADNI-EF). ADNI-MEM is a weighted average of seven

different memory tests.33 Similarly, ADNI-EF combines

eleven different executive functions tests in a single

score.34 These composite scores provide a higher robust-

ness than individual test scores and a sound psychometric

ability to differentiate between different cognitive profiles.

Both ADNI-MEM and ADNI-EF range between −3 and

3, a higher score indicating a better performance.

Demographics and cognitive test scores of the different

diagnostic groups are summarized in Table 1.

Data preparation and feature extraction

In this study, we included 19 variables: three demographic

variables, two composite cognitive test scores, the number

of APOE4 alleles, the amyloid stage, the gray matter

volume of six brain regions, and the glucose metabolism

of the same six regions. Supplemental Table 1 in the

Supplemental Material lists all the variables along with

their abbreviations and their data type (continuous, discrete,

binary or categorical). In this subsection we discuss how we

obtained and prepared these variables.

The six brain regions were selected based on our hypoth-

eses and a priori literature findings of early involvement in

neurodegenerative processes in AD: hippocampus, caudate,

putamen, thalamus, posterior cingulate cortex (PCC), and

precuneus.35 All six regions are defined by the

Harvard-Oxford atlas.36 For each region, we took the

average of the left and right brain regions. This avoided

the number of variables becoming too large, which would

hinder the interpretability of the results. In order to test

the robustness of our model, we ran it a second time, this

time including the left and right regions separately.

This study used three biomarkers, all associated with

AD: amyloid-beta accumulation,1 glucose metabolism,37

and gray matter volume.38 They were measured using

AV45-PET, FDG-PET, and T1 weighted MRI scans,
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respectively. The data resulting from these scans were pro-

cessed as in earlier article.22,35,39 The MRI scans were seg-

mented into gray matter, white matter, and cerebrospinal

fluid and spatially normalized to an aging/AD-specific ref-

erence template using SPM8 (Wellcome Centre for

Human Neuroimaging, University College London) and

VBM8 (Structural Brain Mapping Group, University of

Jena) toolboxes, and the DARTEL algorithm.40 FDG- and

AV45-PET scans were co-registered to the T1 scan and spa-

tially normalized by applying the deformation fields of the

T1 scan. To reduce the effect of partial volume signal

arising from the low spatial resolution of PET scans, we

applied partial volume correction using a three-

compartment model and the MRI-derived tissue seg-

ments.41 We scaled the regional gray matter volumes pro-

portionally by the total intracranial volume, the regional

FDG-PET values by pons uptake, and the regional

AV45-PET values by whole-cerebellum uptake. As

amyloid-beta spreading has been shown to follow a specific

sequence, we captured the amyloid-beta accumulation in a

single five-level amyloid score reflecting the global severity

of amyloid-beta deposition.39Glucose metabolism and gray

matter volume were obtained for each of the six brain

regions of interest.

We included the three demographic variables that are

well-known to modulate the risk of AD: age, sex, and edu-

cation.1 Sex is represented as a binary variable, equal to one

for women and zero for men. Education is expressed in the

number of years of formal education received. The number

of APOE4 alleles is strongly associated with amyloid-beta

production and AD1 and, therefore, included as a variable

in our analysis. We coded this variable as binary, i.e.,

zero for patients with no APOE4 allele and one for patients

with at least one APOE4 allele. Lastly, we included memory

and executive function composite scores named

ADNI-MEM and ADNI-EF, respectively.

Modeling: Bayesian inference in GCGMs

We used a Bayesian framework within GCGMs. This

framework combines three essential components: graphical

models for estimating conditional dependencies and partial

correlations, Bayesian methods for determining the uncer-

tainty of those estimates, and the Gaussian copula for

accommodating diverse data types (continuous, discrete,

and binary). In this section, we provide a detailed explan-

ation of each component.

Graphical models20 represent conditional dependencies

between variables in the form of a graph G, in which each

node represents a variable, and edges connect pairs of variables

that are conditionally dependent. GGMs, also known asMarkov

random fields, assume that all variables Z1, .., Zp come from a

multivariate normal distribution with mean 0 and unknown

covariance matrix Σ. A parameter of interest is the unknown

precision matrix K = Σ
−1 with entries kij, because a simple

transformation of the precision matrix K gives the partial

correlations. Moreover, the sparsity pattern of K directly

encodes the conditional dependence structure. That is,

kij = 0 ⇔ ZiandZjareconditionallyindependent. GGMs lever-

age this relationship to recover the graphical model G.

The aim of GGMs is to use observations of the variables

to estimate the precision matrix K and conditional depend-

ence graph G. These observations are denoted by the n × p

matrix Z, which contains n observations of each of the vari-

ables Z1, .., Zp. With the data Z, one can estimate the preci-

sion matrix K and conditional dependence graph G. This is

commonly done using a frequentist approach, such as the

graphical lasso.42 This approach renders a single estimate

of G and K, also called a point estimate. In contrast, the

Bayesian approach estimates an entire distribution called

the posterior. It is given by P(G, K|Z) and denotes the prob-

ability, that, given the data Z, the true conditional depend-

ence graph equals G and the true precision matrix equals K.

Due to the posterior, we can go beyond frequentist point

estimates and make claims such as: “variable A and B are

conditionally dependent with a probability of 60%”, or

“the partial correlation between A and B is between 0.1

and 0.2 with a probability of 90%”. In other words, the pos-

terior provides model uncertainty.

Before obtaining any data, a researcher can already have

a belief aboutG andK. For example, based on literature one

might expect the presence of an APOE4 allel to be condi-

tionally dependent with the amyloid stage. In Bayesian sta-

tistics, such beliefs are captured in a distribution called the

prior.43 In GGMs, this prior is denoted by P(K, G). When

no prior information is available, one can choose an unin-

formative prior that deems every conditional dependence

equally likely. In this study, we selected a prior probability

Table 1. Subject characteristics per diagnosis group. Values denote the mean and standard deviation (in parentheses).

CN EMCI LMCI AD

Sample size 345 297 205 175

Female (% of total) 53% 44% 43% 42%

Age (y) 74.6 (6.5) 71.6 (7.4) 74.1 (8.1) 75.1 (8.0)

Education (y) 16.5 (2.7) 16.0 (2.7) 16.2 (2.9) 15.9 (2.7)

ADNI-MEM 1.1 (0.60) 0.58 (0.60) 0.04 (0.69) −0.91 (0.59)

ADNI-EF 0.83 (0.76) 0.48 (0.77) 0.14 (0.87) −0.84 (0.90)
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of conditional dependence of 20% for all variable pairs.

Now, the posterior reflects how the data Z update this

prior belief. This is captured in Bayes’ formula given by

P(G, K|Z) ∝ P(Z|K)P(K, G),

in which ∝ denotes equality up to a constant. Notice in

Bayes’ formula how the posterior is a combination of the

data, given by the likelihood P(Z|K), and the prior belief,

given by P(K, G). Estimating the posterior is commonly

done with Markov Chain Monte Carlo (MCMC) algo-

rithms. Such algorithms iteratively obtain samples (G, K)

of this posterior. These samples can then be used to make

a variety of uncertainty claims about G and K. For

example, if 30% of the sampled graphs contain an edge

between variable A and B, then the probability of condi-

tional dependence between A and B is 30%.

So far, we have assumed that the data Z come from a

multivariate normal distribution. This assumption, however,

limits the applicability of GGMs in practical settings, as real-

world data often include non-Gaussian variables. For instance,

in our study, the dataset comprises non-Gaussian continuous

variables, binary variables (APOE4 and sex), ordinal variables

(amyloid stage), and discrete variables (age and education).

To overcome this limitation, we employed Gaussian copula

graphical models (GCGMs). These models can handle

mixed variable types while preserving the theoretical advan-

tages of GGMs. They provide a robust representation of con-

ditional dependency structures and have been successfully

applied in neuroscience and brain connectivity studies.32,44

In GCGMs, the observed variables Y1, , Yp are transformed

into Gaussian variables Z1, , Zp. The partial correlations and

conditional dependence structure is then calculated for these

transformed variables Z1, , Zp. Continuous variables

(brain-region-specific glucose uptake, gray matter volume,

ADNI-MEM and ADNI-EF), were transformed once, before

the start of the MCMC chain, with a semiparametric trans-

formation.45 This transformation is such that the conditional

dependencies and partial correlations between the transformed

variables reflect those of the observed variables.45 We treated

age, albeit a discrete variable, as a continuous variable too.

Discrete or categorical variables (sex, education, APOE4 pres-

ence and amyloid stage) were transformed at every iteration in

the MCMC algorithm according to the copula framework.46

The estimated partial correlations and conditional dependen-

cies resulting from this discrete variable transformation reli-

ably represent the underlying structure of observed data, but

do not come with a theoretical guarantee.46 In this study we

used 120,000 MCMC iterations, discarding the first 20,000

iterations as burn-in. Convergence diagnostics confirmed

that the remaining 100,000 iterations were sufficient to

provide reliable and stable estimates.

We refer interested readers to a more detailed explanation

of Bayesian Gaussian copula graphical models.31 For guid-

ance on implementing this approach, we refer readers to the

R package BDgraph.47 To ensure reproducibility, the R

scripts used to produce our results can be found on the

GitHub page https://github.com/lucasvogels33/Modeling-

AD-Bayesian-GCGM-from-Demographic-Cognitive-and-Ne

uroimaging-Data.

Results

This section presents the results. It contains the estimated

conditional dependency networks and the corresponding

estimated partial correlations, but also showcases the uncer-

tainty of these estimates. We also briefly discuss how the

results change as the disease progresses and what the

impact is of considering both the left and right side of

each brain region.

Figure 1(a) displays all conditional dependencies in a

network. In such a network, an edge between a pair of con-

ditionally dependent variables (e.g., age and executive func-

tion) is also called a direct pathway. Some pairs of variables

are connected via two or more edges. We refer to such con-

nections as indirect conditional dependence pathways. We

observe conditional dependency pathways (both direct

and indirect), between age and cognition (Figure 1(b)), as

well as between sex and cognition (Figure 1(c)). We

observe in Figure 1(d) that the amyloid stage and brain-

region specific gray matter volume are conditionally

dependent with cognition, but report limited conditional

dependency between brain-region specific glucose uptake

and cognition. Figure 1(e) shows that both old age and

being a woman are predominantly negatively partially cor-

related with brain-region specific volume and glucose

metabolism. Lastly, Figure 1(f) depicts the ten conditional

dependencies between brain-region specific volume and

glucose uptake.

The conditional dependence networks in Figure 1 reveal

what variables were likely to be conditionally dependent.

They do not reveal, however, the strength of this depend-

ence. These are given by the partial correlations and are

shown, alongside the Pearson correlations in Figure 2.

Pearson correlations were set to zero when the p-value

exceeds 0.05, while partial correlations were set to zero

when the corresponding edge inclusion probability is

below 50%. The Pearson correlation heatmap

(Figure 2(a)) is denser compared to the partial correlation

heatmap (Figure 2(b)). The average absolute Pearson cor-

relation was 0.17, while the average absolute partial correl-

ation was only 0.07. Moreover, just 27% of Pearson

correlations were set to zero versus 65% of partial correla-

tions. Strong Pearson correlations (with an absolute value

greater than 0.25) were fairly common (26%), while

strong partial correlations were less frequent (7%).

We applied GCGMs to AD primarily to discover the

conditional dependencies related to cognition (i.e.,

memory and executive function). Figure 3 presents the

ten variables that were most likely conditionally dependent

with memory. For each variable, the figure displays the
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probability of conditional dependence (left) and the mean

partial correlation (right). Memory was partially correlated

with hippocampus volume (0.25), being a woman (0.3),

amyloid stage (−0.25), and age (0.1). Figure 4 presents

the same information for executive function. Executive

function was partially correlated with PCC volume (0.1)

Figure 1. Visualization of conditional dependence among brain-region specific glucose uptake (G), brain-region specific gray matter

volume (V), and demographic variables. An edge between variables indicates a conditional dependence with a probability of at least

50%. The width of the edges denotes the size of this probability ranging from 50% to 100%. A blue (red) edge denotes a positive

(negative) partial correlation. (a) All variables; (b) Age and cognition; (c) Sex and cognition; (d) Biomarkers and cognition; (e)

Demographics and biomarkers; (f) Glucose uptake and volume.
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and age (−0.1). For both education and amyloid stage, we

reported a 75% probability of conditional dependence with

executive function.

The main advantage of the Bayesian approach is its

ability to compute the uncertainty of its estimates. We

showcase this in Figure 5 which presents the probability

density plots of four selected partial correlations. The

spike at zero in some of these plots denotes the probability

that the partial correlation is zero, i.e., the probability that

the variables were conditionally independent. The partial

correlations depicted in the plots have low standard devia-

tions (≤ 0.06). In fact, across all pairs of variables, the

average standard deviation was just 0.02 with a maximum

of 0.06. The estimated means of the partial correlations,

as reported in Figure 2(b), were therefore likely to be

close to the true partial correlations.

So far, we have considered the results of 1 022 patients

combined over all four disease stages: healthy, EMCI,

LMCI, and AD. Next, we examined how pathways vary

across different disease stages by analyzing each stage sep-

arately. The resulting networks are shown in Supplemental

Material 2. We observe that the disease-stage specific net-

works are sparser than the combined model, with approxi-

mately 80% of variable pairs being conditionally

independent in each of the four stage specific models, com-

pared to 65% in the combined model. The average partial

correlation value also decreased from 0.07 in the combined

model to around 0.05 in each of the disease-stage specific

models. This increased sparsity can be attributed to

reduced within-group variance. This reduced variance

made it harder for the model to deduce conditional depend-

encies. The reduced variance was observed in all variables,

but was particularly present in the memory and executive

function variables. The composite memory score, for

example, ranged between −3 and 3 in the combined

model. Among AD patients, however, it ranged between

−3 and 0.5. This is why, for this disease stage, memory

and executive function had almost no conditional depend-

encies left, see Supplemental Figure 1(e) in the

Supplemental Material. In later disease stages, reduced vari-

ance also caused age and sex to lose conditional dependen-

cies with APOE4 and the amyloid score. The hippocampus

volume was an exception to this trend and had more condi-

tional dependencies as the disease progresses. Of the path-

ways that we found for the combined model, some

continued to exist in all four disease stages. Examples are

the conditional dependencies between age and brain

volume, as well as between sex and brain volume. Other

pathways of the combined model only appeared in one

disease stage, predominantly in the EMCI stage. These

included the pathway linking age to memory via the

amyloid stage, or the pathway linking sex and memory

through the hippocampus volume.

We also conducted a separate analysis in which we

included the left and right brain regions separately. The

resulting network with 31 variables is shown in the

Figure 2. Pearson correlations (left) and partial correlations (right) among brain-region specific glucose uptake (G), brain-region

specific gray matter volume (V), and demographic variables. Pearson correlations are set to zero when p-value >0.05. Partial

correlations are set to zero when the corresponding edge inclusion probability is smaller than 50%. (a) Pearson correlation; (b) Partial

correlation.
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Supplemental Figures 2(a) and 3 and was sparser compared

to the original, merged model. Specifically, 77% of condi-

tional dependencies had a lower probability than 0.5, com-

pared to 65% in the combined model. Additionally, the

average partial correlation decreased to 0.047 from 0.07

in the original model. Our previous conclusions remain

largely unchanged. Notably, sex continued to influence

memory through education, amyloid-beta, hippocampal

volume (V Hipp), and posterior cingulate cortex volume

(V PCC), while age still impacted memory through

amyloid-beta. However, some associations no longer held:

age was no longer conditionally dependent with hippocam-

pal volume, and amyloid-beta no longer associated with

executive function. Separating the left and right brain

region analysis, also provided extra insights: the volumes

of the left and right brain regions were highly partially cor-

related, as is their glucose metabolism. Furthermore, the left

hippocampal volume was specifically linked to memory,

while the left PCC showed a gender-related association.

Finally, the association between volume and metabolism

was notably stronger within the same brain regions.

Discussion

This section interprets the results of the previous section

and compares them with the existing results in the literature.

We also discuss the limitations of our work and end with a

conclusion.

Interpretation of results

The interpretation of all conditional (in)dependencies and

partial correlations goes beyond the scope of this paper.

Instead, we interpret here those associations that we deem

relevant.

We first elucidate the conditional dependencies (direct

and indirect) between the demographic variables (age,

sex, and education) and cognition (memory and executive

function), starting with age. It is well-established in the lit-

erature that age is the biggest risk factor for AD.1 In line

with this, we found negative Pearson correlations between

age and cognition (Figure 2(a)) and a negative partial correl-

ation between age and executive function (Figure 4).

However, we found a surprising positive partial correlation

between age and memory. Specifically, we estimated that

age and memory are conditionally dependent with 92%

and that their partial correlation is between 0.05 and 0.2

with a 90% probability (Figure 5(a)). At first glance, this

result suggested a possible limitation in the model.

However, we found a similar result using a linear regression

using the same 19 variables of our model with memory as a

dependent variable: the resulting regression coefficient of

Figure 3. The probability of being conditionally dependent with memory (left) and the partial correlation with memory (right).

Figure 4. The probability of being conditionally dependent with executive function (left) and the partial correlation with executive

function (right).
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age was positive (0.011) and significant (p-value <0.001).

The positive partial correlation and regression coefficient

suggested that there was a confounding variable not in

our model through which age positively associated with

memory. A potential candidate for this confounder is life-

style. As noted in literature, 45% of AD cases can be attrib-

uted to 14 lifestyle related risk factors,1 of which only

education was included in our model. The older patients

in our dataset might be the ones with a better lifestyle,

and therefore a better memory.

The positive partial correlation between age and memory

also suggested that the main indirect pathways through

which age contributes to memory decline were captured

in our model. Figure 1(b) shows two such pathways.

Aging increased amyloid-beta deposition and reduced the

gray matter volume of the hippocampus and PCC, impair-

ing memory and executive function. Both associations

were confirmed in the literature.1,48,49 The GCGM model

allowed us to estimate the uncertainty of these estimates.

For example, with more than 95% certainty we know that

the partial correlation between the amyloid stage and

memory was between −0.15 and −0.35 (Figure 5(c)).

Similarly, we observed that with almost 100% certainty

the partial correlation between memory and the gray

matter volume of the hippocampus ranged between 0.2

and 0.35 (Figure 5(b)).

Figure 5. Estimated probability density plots of the partial correlations of four selected pairs of variables. (a) Age and memory; (b)

Hippocampus volume and memory; (c) Amyloid stage and memory; (d) Executive function and education.
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Next, we look at the relation between sex and cognition.

We found a positive partial correlation between being a

woman and memory (Figure 2(b)). The Pearson correlation

between sex and memory was weaker (Figure 2(a)). This

suggested that there may exist indirect conditional depend-

ency pathways between sex and cognition, each of which

dampening the positive effect of the observed direct

partial correlation. Figure 1(c) depicts four such pathways.

First, women in our dataset have spent, on average, one year

less in education. This effect was also observed in litera-

ture.1,50,51 The density plot in Figure 5(d) suggested that

education and executive function were conditionally

dependent with a probability of 78% with a partial correl-

ation ranging between 0 and 0.2. Second, we observed a

positive partial correlation between being a woman and

amyloid accumulation. An association also found by

others.52 This association may provide evidence that

amyloid-beta deposition is associated with our brain’s

immune system,53 which was reported to be stronger in

women.54 Third, we found that women have smaller hippo-

campal volumes. A conclusion also found in a large study

with 18 600 individuals.55 Lastly, we found a negative

partial correlation between sex and PCC gray matter

volume. We found a 40% chance that memory was condi-

tionally dependent on education (Figure 3) and a 78%

chance that executive function was conditionally dependent

on education (Figure 4). This is in line with the prevailing

notion that education improves cognition and reduces the

risk of developing AD.1

Next, we identified the conditional dependency path-

ways between neuro-imaging variables (gray matter

volume, glucose uptake and amyloid-beta accumulation)

and cognition. Figure 1(d) depicts all such dependencies.

We reported a conditional dependency between the hippo-

campal volume and memory with a probability of one,

see Figure 3. This supported the established notion that

the hippocampus is associated with memory.56 Figure 4

shows an almost certain conditional dependency between

the PCC volume and executive function, confirming a

theory that PCC is involved in attention.57Our findings sug-

gested that the high Pearson correlations between brain-

region specific volume and cognition (Figure 2(a)) were

solely due to each region’s conditional dependence with

the hippocampus and PCC volume. Corrected for other

variables, we found no relation between glucose metabol-

ism and cognition. The link between brain-region specific

glucose uptake and cognition has not been widely

studied, although there is evidence for an association

between PCC glucose uptake and cognition.58 We found

a conditional dependence between these two variables

with a 50% probability, but the corresponding partial correl-

ation was close to zero (Figure 3). We observed that the

presence of at least one allele of the APOE4 gene was par-

tially correlated with amyloid-beta accumulation, which, in

turn, was conditionally dependent with both executive

function and memory. This came as no surprise, as this sup-

ported the widely accepted hypothesis that the presence of

APOE4 alleles is linked to amyloid-beta accumulation and

cognitive decline.48

Third, we investigated the conditional dependencies

between demographic variables (sex and age) and brain-

region specific glucose uptake and volume. Figure 1(e)

depicts such dependencies. We found that age and gender

showed more conditional dependencies with brain-region

specific volume than with brain-region specific glucose

uptake. Age was negatively partially correlated with the

volume of the putamen, hippocampus, PCC and thalamus.

Age induced atrophy in these regions was also described

in literature.59 We reported negative partial correlations

between being female and the volume of three brain

regions: the hippocampus, precuneus and PCC. We also

found a positive partial correlation between being a

woman and the volume of the putamen, an association

also reported by others.60 Concerning glucose uptake, age

was only negatively partially correlated with the caudate.

This aligns with earlier findings that the precuneus cortex,

hippocampus, thalamus, and putamen are among the

regions whose metabolism is least affected by aging.61

Lastly, we looked at the conditional dependencies

between brain-region specific volume and glucose metabol-

ism. They are depicted in Figure 1(f). We found ten such

conditional dependencies. Supplemental Figure 4 in the

Supplemental Material shows that these conditional

dependencies increased in number as the disease pro-

gresses. Among EMCI patients, we found almost no condi-

tional dependencies between brain volume and glucose

uptake, whereas in AD patients several such conditional

dependencies can be observed. Among AD patients, the

volume and glucose uptake of the hippocampus were posi-

tively partially correlated. The same was true for the thal-

amus and the putamen. This was in line with the

hypothesis that in AD reduced glucose metabolism pre-

cedes neuronal loss and brain volume reduction.37

Limitations

Our Bayesian approach to GCGMs has three main limita-

tions. First, it becomes slow for practical applications

when the number of variables p and the number of observa-

tions n increases. The GCGM discussed in this paper had

p = 19 variables and n = 1 022 observations and ran

within 10 minutes. A larger model, however, with more

than 100 variables and/or more than 5000 observations

would be infeasible for a Bayesian GCGM. Bayesian uncer-

tainty evaluation relies on an MCMC algorithm that itera-

tively samples new graphs and precision matrices, both of

a dimension p × p. Increasing p therefore exponentially

increases the running time and memory requirements of

the model. Moreover, at every MCMC iteration, the algo-

rithm needs to resample every non-continuous variable n
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times. This resampling allows for the inclusion of binary,

discrete and ordinal variables, but leads to a lack of scalabil-

ity in the number of observations.

The second limitation of the GCGM is its linearity

assumption. More specifically, partial correlations represent

the strength of a linear relationship with the effect of other

variables removed. Partial correlations can be over-, or

underestimated, when the underlying relationship is not

linear.

Lastly, GCGMs are undirected. This comes with advan-

tages. GCGMs can deal with cyclic networks, require rela-

tively few observations and do not need prior knowledge of

the structure. However, the undirected nature of GCGMs

make them not suited for identifying causal effects, such

as the impact of a treatment on amyloid-beta accumulation,

or the effect of a lifestyle change on cognition. The undir-

ected networks provided by GCGMs can, however, be

used as a starting point for causal analysis.

The particular application of GCGMs described in this

article also comes with three caveats, each opening an

avenue for further research. First, apart from education,

we did not include any lifestyle variables in our model.

These variables account for an estimated 45% of AD

cases1 and are a probable cause for the surprising positive

partial correlation between old age and memory. Second,

Bayesian models allow for the inclusion of prior knowl-

edge. For simplicity, we choose in this article for an unin-

formative prior in which every pair of variables is

conditionally dependent with 20%. Future work could use

AD literature to construct an informed prior, certainly for

variable pairs whose association is known, such as

APOE4 and the amyloid stage. The use of an informed

prior could lead to a more realistic conditional dependence

structure. Lastly, this work did not consider temporal data,

and therefore, did not cover the progression of AD over

time. Future research could add the disease stage over

time as a set of variables. This would allow the model to dis-

cover the most important factors contributing to the conver-

sion of CN to EMCI to LMCI, and ultimately, to AD.

Conclusions

In this article we present a Bayesian approach to GCGMs.

This approach has three capabilities: (i) the estimation of

an undirected network depicting the conditional dependen-

cies and partial correlations among variables, (ii) the quan-

tification of the uncertainty of these estimates and, (iii) the

inclusion of all types of variables whether normally distrib-

uted or not. Bayesian GCGMs have been successfully

applied in other domains,30–32 but remain, to the best of

our knowledge, unexplored in the AD domain.

Our GCGM uncovered the partial correlations and con-

ditional dependencies among demographic data, the

global amyloid stage, cognitive test scores, brain-region

specific gray matter volume, and brain-region specific

glucose uptake. Our Bayesian approach enabled us to esti-

mate the uncertainties of these estimates too.

As expected, we observed that the partial correlations

and their corresponding conditional dependency networks

were sparser than the commonly used Pearson correlation

or covariance measures. Our study confirmed existing

knowledge, but also opened up new hypotheses. We

found three indirect pathways through which old age

reduces cognition: hippocampal volume loss, PCC

volume loss, and amyloid-beta accumulation. Moreover,

we found that women performed better on cognitive tests,

but also discovered four indirect pathways that dampen

this effect: lower hippocampal volume, lower PCC

volume, more amyloid-beta accumulation, and less educa-

tion. We also found that the hippocampus and PCC

volumes are conditionally dependent on cognition, but

found limited conditional dependence between brain-region

specific glucose uptake and cognition. We found that age

and sex were more conditionally dependent with brain-

region specific volume than with brain-region specific

glucose uptake. Lastly, we discovered that the conditional

dependence between brain-region specific volume and

glucose metabolism increased as the disease progresses.
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