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Abstract

Background: The early detection of Alzheimer’s disease (AD) requires an understanding of the relationships between a
wide range of features. Conditional independencies and partial correlations are suitable measures for these relationships,
because they can identify the effects of confounding and mediating variables.

Objective: To estimate conditional dependencies and partial correlations between relevant features in AD using a
Bayesian approach to Gaussian copula graphical models (GCGMs). This approach has two key advantages. First, it includes
binary, discrete, and continuous variables. Second, it quantifies the uncertainty of the estimates. Despite these advantages,
Bayesian GCGMs have not been applied to AD research yet.

Methods: We design 2 GCGM to find the conditional dependencies and partial correlations among brain-region specific
gray matter volume and glucose uptake, amyloid-beta levels, demographic information, and cognitive test scores. Ve
applied our model to | 022 participants, including healthy and cognitively impaired, across different stages of AD.
Results: We found that aging reduces cognition through three indirect pathways: hippocampal volume loss, posterior
cingulate cortex (PCC) volume loss, and amyloid-beta accumulation. We found a positive partial correlation between
being woman and cognition, but also discovered four indirect pathways that dampen this association in women: lower
hippocampal volume, lower PCC volume, more amyloid-beta accumulation, and less education. Ve found limited rela-
tions between brain-region specific glucose uptake and cognition, but discovered that the hippocampus and PCC volumes
are related to cognition.

Conclusions: This study shows that the use of GCGMs offers valuable insights into AD pathogenesis.
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Introduction

Alzheimer’s disease (AD) is clinically characterized by
amyloid-beta and tau accumulation. AD is the primary cause

of dementia, a condition defined by a decline in cognitive
and executive functions.’ Despite extensive research, under-
lying causes of pathological changes in AD remain unknown.”

Traditional research in AD typically selects a set of
(dependent) variables and assesses the statistical associa-
tions with other variables (p1redict01rs).3’4 Although this
approach can lead to valuable insights, it overlooks the
complex network of relations underlying AD pathogenesis.
For instance, predictor variables may influence each other (a
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phenomenon known as collinearity), or a confounding vari-
able may obscure the true relationship between predictors
and dependent variables, potentially leading to unreliable
results.

Beyond this traditional approach, literature therefore
increasingly treats relations between variables from a
network perspective. A popular example of this perspective
is the field of brain connectivity, which studies the network
of relationships between different brain regions.” Brain con-
nectivity has three subfields: structural, functional, and
effective connectivity. Structural connectivity uncovers
the physical relations among brain regions,® for instance
using diffusion tensor imaging.” Functional connectivity
involves the covariance, correlation, or other statistical
dependency among brain regions.® Effective connectivity
discovers the causal relations among brain regions’; a
common statistical technique to study effective connectivity
is Dynamic Causal Modeling. "’

The present article studies the network of associations
between regional gray matter volume and glucose metabol-
ism, but goes beyond the standard brain connectivity approach
by also including demographic factors, cognitive scores, and
the global amyloid-beta accumulation. In total, we included
19 features that have been shown to play a role in the patho-
genesis of AD. Network models between these variables are
not new in AD literature and are predominantly causal of
nature. A popular tool for causal inference is Structural
Equation Modeling (SEM), a family of statistical techniques
that, given the causal relations between variables, can estimate
the effect size of each relationship.'' Mediation analysis is
part of the SEM family and studies the contribution of a
third variable to the causal dependency between two other
variables. It is a common technique in AD research.'*'*
Other applications of SEM in AD include path analysis,"
factor analysis,'® and structural regression."” For causal infer-
ence in AD research, there are various alternatives to SEM
including Structural Causal models,'® System Dynamic
models," and Dynamic Causal Modeling.'®

This article considers undirected graphs. The resulting rela-
tions are therefore not causal of nature, as opposed to the
directed and causal relations studied by SEMs. Undirected
graphs have three main advantages over classical SEMs.
First, undirected networks allow cycles. Often a variable A
causes B and B causes A. We refer to such relation as a
cycle. Cycles are common in AD pathology. SEMs,
however, assume the network is acyclic and are therefore
not suitable for inference on cyclic relations. Second, causal
relations are hard to detect and generally need large sample
sizes and longitudinal data. These data are costly to obtain.
Inference on undirected networks is possible with smaller
sample sizes and does not require longitudinal data. Lastly,
undirected networks do not require prior knowledge about
the structure of the graph. They can, therefore, be used
without limitations on the structure. SEMs do need a causal
relation graph as input. SEMs are able to refine the causal

structure of this input graph, but these refinements suffer
from a poor performance.'® SEMs are therefore often
restricted to variables and relations of which the causal struc-
ture is available a priori. Undirected networks, like the graph-
ical model estimated in this article, can facilitate to form
hypotheses about the structure of a causal network. Thus,
they have the potential to improve the performance of
SEMs and other causal inference methods.

Formally, in an undirected network, an edge between
two variables represents some measure of statistical
dependency. A common choice for this dependency is the
Pearson’s correlation or the covariance. However, these
metrics can lead to spurious associations by overlooking
confounding or mediating factors. Ideally one wants a cor-
relation that is corrected for such factors. Such a correlation
exists and is called the partial correlation. Like the Pearson
correlation, the partial correlation takes on a value in the
range from —1 to 1. Under the assumption that all variables
are multivariate normally distributed, a zero partial correl-
ation implies conditional independence. Two variables A
and B are conditionally independent when, given all other
variables, there is no relation between A and B. Or, put dif-
ferently, if we keep all other variables fixed, knowing the
value of variable A, does not give any information about
the value of variable B. One can depict conditional depend-
encies in an undirected graphical model, where nodes
denote random variables and an edge between two nodes/
variables is included if and only if the variables are condi-
tionally dependent.’*?! Such graphical models depict con-
founding and mediating pathways between large numbers
of variables in one figure. They constitute, therefore, a
powerful tool to uncovering the complex associations
involved in AD, as previously demonstrated.?

Conditional dependencies, partial correlations, and
graphical models are commonly estimated using a frequen-
tist approach. This approach can estimate partial correla-
tions and predict whether any two variables are
conditionally dependent or not. In the field of brain connect-
ivity in AD, there are two articles applying frequentist
graphical models to uncover conditional dependencies
between brain region-specific gray matter volume and
glucose uptake.”>** Although frequentist approaches are
relatively straightforward, they are not able to provide any
uncertainty around the estimated conditional dependencies
and partial correlations, a concept referred to as model
uncertainty. To overcome this limitation, we employed a
Bayesian approach, which offers a key advantage: it not
only estimates conditional (in)dependence and partial corre-
lations but also quantifies the uncertainty of these estimates.

Quantifying this uncertainty is important. Conditional
independence, and statistical associations in general, are
not black and white; based on the data, relations can be
opaque. Consider, for example, the ambiguous role that
sex plays in the pathology of AD.>> When answering the
question “Are two variables conditionally dependent?”; a
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simple yes or no might overlook the complexity of the rela-
tion. Instead, the answer “There is conditional dependence
with 75%”, gives more color. Uncertainty also allows
researchers to state that, based on the data, it is not clear
if some variables are conditionally dependent.
Quantifying uncertainty becomes even more pivotal if con-
ditional dependence graphs are used as a starting point to
develop a causal model, in which mistakes in the starting
graph might trickle down to spurious causal results.'®

Despite the advantage that model uncertainty provides,
the Bayesian approach is still uncommon in the field of
AD research. This is largely due to the dated notion that
the Bayesian approach is complex and inefficient.
Although this claim is historically true, recent advance-
ments have made Bayesian methods more computationally
efficient,”®?” making their application to AD research pos-
sible. For example, Bayesian methods have been applied to
estimate conditional dependence between brain regions>>®
and to determine the uncertainty of functional connectivity
estimates.?’ All these applications, however, used so-called
Gaussian graphical models (GGMs). In GGMs, all variables
are assumed to follow a multivariate normal distribution. In
the present study, we employed Gaussian copula graphical
models (GCGMs). This methodology enabled the integra-
tion of non-normal variables, such as discrete (e.g.,
amyloid-beta levels), binary (e.g., sex) and continuous vari-
ables (e.g., MRI, FDG-PET).

This study presents a Bayesian approach to GCGMs. Our
methodology has three capabilities. (i) the estimation of an
undirected network depicting the conditional dependencies
and partial correlations between variables, (ii) the quantifica-
tion of the uncertainty of these estimates and, (iii) the inclu-
sion of all types of variables whether normally distributed
or not. Bayesian GCGMs have been successfully applied in
other domains,3(L32 but remain, to the best of our knowledge,
unexplored in the AD domain.

The application of GCGMs to AD, allowed us to study the
conditional dependence structure among 19 relevant features.
Specifically, our primary objective was to identify the condi-
tional dependence pathways between demographic variables
and cognition (i.e., memory and executive function scores),
and between neuro-imaging variables (i.e., gray matter
volume, glucose uptake along with amyloid-beta levels) and
cognition. Furthermore, we explored the conditional depend-
ency pathways through which demographic variables influ-
ence gray matter volume and glucose uptake, and
investigated the conditional dependencies between brain
region-specific volume and glucose metabolism.

Methods

Subjects

We obtained the data for this study from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), which provides

a public database for AD research including clinical, neuro-
psychological, neuroimaging, and biomarker data. A com-
plete description of the ADNI and up-to-date information
is available at https:/adni.loni.usc.edu. For this study, we
selected the baseline examinations of the ADNI-GO and
ADNI-2 phases. The final dataset included 1022 partici-
pants selected based on the availability of concurrent
T1-weighted structural MRI, FDG-PET, amyloid-sensitive
AV45-PET data, neuropsychological assessments, and
blood-based APOE4 genotyping.

After initial quality control and data preparation, the final
sample included 345 cognitively normal control subjects
(CN), 297 patients with amnestic early mild cognitive
impairment (EMCI), 205 patients with amnestic late mild
cognitive impairment (LMCI), and 175 patients with AD.
We included two cognitive composite scores assessing
memory (ADNI-MEM) and executive function
(ADNI-EF). ADNI-MEM is a weighted average of seven
different memory tests.>® Similarly, ADNI-EF combines
eleven different executive functions tests in a single
score.>* These composite scores provide a higher robust-
ness than individual test scores and a sound psychometric
ability to differentiate between different cognitive profiles.
Both ADNI-MEM and ADNI-EF range between —3 and
3, a higher score indicating a better performance.
Demographics and cognitive test scores of the different
diagnostic groups are summarized in Table 1.

Data preparation and feature extraction

In this study, we included 19 variables: three demographic
variables, two composite cognitive test scores, the number
of APOE4 alleles, the amyloid stage, the gray matter
volume of six brain regions, and the glucose metabolism
of the same six regions. Supplemental Table 1 in the
Supplemental Material lists all the variables along with
their abbreviations and their data type (continuous, discrete,
binary or categorical). In this subsection we discuss how we
obtained and prepared these variables.

The six brain regions were selected based on our hypoth-
eses and a priori literature findings of early involvement in
neurodegenerative processes in AD: hippocampus, caudate,
putamen, thalamus, posterior cingulate cortex (PCC), and
precuneus.” All six regions are defined by the
Harvard-Oxford atlas.>® For each region, we took the
average of the left and right brain regions. This avoided
the number of variables becoming too large, which would
hinder the interpretability of the results. In order to test
the robustness of our model, we ran it a second time, this
time including the left and right regions separately.

This study used three biomarkers, all associated with
AD: amyloid-beta accumulation, glucose metabolism,37
and gray matter volume.*® They were measured using
AV45-PET, FDG-PET, and T1 weighted MRI scans,
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Table |. Subject characteristics per diagnosis group. Values denote the mean and standard deviation (in parentheses).

CN EMCI LMCI AD
Sample size 345 297 205 175
Female (% of total) 53% 44% 43% 42%
Age (y) 74.6 (6.5) 71.6 (7.4) 74.1 (8.1) 75.1 (8.0)
Education (y) 16.5(2.7) 16.0 (2.7) 16.2 (2.9) 159 (2.7)
ADNI-MEM 1.1 (0.60) 0.58 (0.60) 0.04 (0.69) —0.91 (0.59)
ADNI-EF 0.83 (0.76) 0.48 (0.77) 0.14 (0.87) —0.84 (0.90)

respectively. The data resulting from these scans were pro-
cessed as in earlier article.**>>*° The MRI scans were seg-
mented into gray matter, white matter, and cerebrospinal
fluid and spatially normalized to an aging/AD-specific ref-
erence template using SPMS8 (Wellcome Centre for
Human Neuroimaging, University College London) and
VBMS (Structural Brain Mapping Group, University of
Jena) toolboxes, and the DARTEL adgorithm.40 FDG- and
AVA45-PET scans were co-registered to the T1 scan and spa-
tially normalized by applying the deformation fields of the
T1 scan. To reduce the effect of partial volume signal
arising from the low spatial resolution of PET scans, we
applied partial volume correction using a three-
compartment model and the MRI-derived tissue seg-
ments.*! We scaled the regional gray matter volumes pro-
portionally by the total intracranial volume, the regional
FDG-PET values by pons uptake, and the regional
AV45-PET values by whole-cerebellum uptake. As
amyloid-beta spreading has been shown to follow a specific
sequence, we captured the amyloid-beta accumulation in a
single five-level amyloid score reflecting the global severity
of amyloid-beta deposition.** Glucose metabolism and gray
matter volume were obtained for each of the six brain
regions of interest.

We included the three demographic variables that are
well-known to modulate the risk of AD: age, sex, and edu-
cation.' Sex is represented as a binary variable, equal to one
for women and zero for men. Education is expressed in the
number of years of formal education received. The number
of APOE4 alleles is strongly associated with amyloid-beta
production and AD' and, therefore, included as a variable
in our analysis. We coded this variable as binary, i.e.,
zero for patients with no APOE4 allele and one for patients
with at least one APOE4 allele. Lastly, we included memory
and executive function composite scores named
ADNI-MEM and ADNI-EF, respectively.

Modeling: Bayesian inference in GCGMs

We used a Bayesian framework within GCGMs. This
framework combines three essential components: graphical
models for estimating conditional dependencies and partial
correlations, Bayesian methods for determining the uncer-
tainty of those estimates, and the Gaussian copula for

accommodating diverse data types (continuous, discrete,
and binary). In this section, we provide a detailed explan-
ation of each component.

Graphical models® represent conditional dependencies
between variables in the form of a graph G, in which each
node represents a variable, and edges connect pairs of variables
that are conditionally dependent. GGMs, also known as Markov
random fields, assume that all variables Zi, .., Z, come from a
multivariate normal distribution with mean O and unknown
covariance matrix X. A parameter of interest is the unknown
precision matrix K = £~! with entries ki, because a simple
transformation of the precision matrix K gives the partial
correlations. Moreover, the sparsity pattern of K directly
encodes the conditional dependence structure. That is,
kij = 0 & Z;andZ,areconditionallyindependent. GGMs lever-
age this relationship to recover the graphical model G.

The aim of GGMs is to use observations of the variables
to estimate the precision matrix K and conditional depend-
ence graph G. These observations are denoted by the n X p
matrix Z, which contains n observations of each of the vari-
ables Zi, .., Z,. With the data Z, one can estimate the preci-
sion matrix K and conditional dependence graph G. This is
commonly done using a frequentist approach, such as the
graphical lasso.*? This approach renders a single estimate
of G and K, also called a point estimate. In contrast, the
Bayesian approach estimates an entire distribution called
the posterior. It is given by P(G, K|Z) and denotes the prob-
ability, that, given the data Z, the true conditional depend-
ence graph equals G and the true precision matrix equals K.
Due to the posterior, we can go beyond frequentist point
estimates and make claims such as: “variable A and B are
conditionally dependent with a probability of 60%”, or
“the partial correlation between A and B is between 0.1
and 0.2 with a probability of 90%”. In other words, the pos-
terior provides model uncertainty.

Before obtaining any data, a researcher can already have
a belief about G and K. For example, based on literature one
might expect the presence of an APOE4 allel to be condi-
tionally dependent with the amyloid stage. In Bayesian sta-
tistics, such beliefs are captured in a distribution called the
prior.43 In GGMs, this prior is denoted by P(K, G). When
no prior information is available, one can choose an unin-
formative prior that deems every conditional dependence
equally likely. In this study, we selected a prior probability
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of conditional dependence of 20% for all variable pairs.
Now, the posterior reflects how the data Z update this
prior belief. This is captured in Bayes’ formula given by

P(G,K|Z) x P(Z|K)P(K, G),

in which « denotes equality up to a constant. Notice in
Bayes’ formula how the posterior is a combination of the
data, given by the likelihood P(Z|K), and the prior belief,
given by P(K, G). Estimating the posterior is commonly
done with Markov Chain Monte Carlo (MCMC) algo-
rithms. Such algorithms iteratively obtain samples (G, K)
of this posterior. These samples can then be used to make
a variety of uncertainty claims about G and K. For
example, if 30% of the sampled graphs contain an edge
between variable A and B, then the probability of condi-
tional dependence between A and B is 30%.

So far, we have assumed that the data Z come from a
multivariate normal distribution. This assumption, however,
limits the applicability of GGMs in practical settings, as real-
world data often include non-Gaussian variables. For instance,
in our study, the dataset comprises non-Gaussian continuous
variables, binary variables (APOFE4 and sex), ordinal variables
(amyloid stage), and discrete variables (age and education).
To overcome this limitation, we employed Gaussian copula
graphical models (GCGMs). These models can handle
mixed variable types while preserving the theoretical advan-
tages of GGMs. They provide a robust representation of con-
ditional dependency structures and have been successfully
applied in neuroscience and brain connectivity studies.*>**
In GCGM:s, the observed variables Yy, , Y, are transformed
into Gaussian variables Z;, , Z,. The partial correlations and
conditional dependence structure is then calculated for these
transformed  variables Z;,, Z,. Continuous variables
(brain-region-specific glucose uptake, gray matter volume,
ADNI-MEM and ADNI-EF), were transformed once, before
the start of the MCMC chain, with a semiparametric trans-
formation.*> This transformation is such that the conditional
dependencies and partial correlations between the transformed
variables reflect those of the observed variables.*> We treated
age, albeit a discrete variable, as a continuous variable too.
Discrete or categorical variables (sex, education, APOE4 pres-
ence and amyloid stage) were transformed at every iteration in
the MCMC algorithm according to the copula framework.*®
The estimated partial correlations and conditional dependen-
cies resulting from this discrete variable transformation reli-
ably represent the underlying structure of observed data, but
do not come with a theoretical guarantee.*® In this study we
used 120,000 MCMC iterations, discarding the first 20,000
iterations as burn-in. Convergence diagnostics confirmed
that the remaining 100,000 iterations were sufficient to
provide reliable and stable estimates.

We refer interested readers to a more detailed explanation
of Bayesian Gaussian copula graphical models.*' For guid-
ance on implementing this approach, we refer readers to the
R package BDgraph.*” To ensure reproducibility, the R

scripts used to produce our results can be found on the
GitHub page https:/github.com/lucasvogels33/Modeling-
AD-Bayesian-GCGM-from-Demographic-Cognitive-and-Ne
uroimaging-Data.

Results

This section presents the results. It contains the estimated
conditional dependency networks and the corresponding
estimated partial correlations, but also showcases the uncer-
tainty of these estimates. We also briefly discuss how the
results change as the disease progresses and what the
impact is of considering both the left and right side of
each brain region.

Figure 1(a) displays all conditional dependencies in a
network. In such a network, an edge between a pair of con-
ditionally dependent variables (e.g., age and executive func-
tion) is also called a direct pathway. Some pairs of variables
are connected via two or more edges. We refer to such con-
nections as indirect conditional dependence pathways. We
observe conditional dependency pathways (both direct
and indirect), between age and cognition (Figure 1(b)), as
well as between sex and cognition (Figure 1(c)). We
observe in Figure 1(d) that the amyloid stage and brain-
region specific gray matter volume are conditionally
dependent with cognition, but report limited conditional
dependency between brain-region specific glucose uptake
and cognition. Figure 1(e) shows that both old age and
being a woman are predominantly negatively partially cor-
related with brain-region specific volume and glucose
metabolism. Lastly, Figure 1(f) depicts the ten conditional
dependencies between brain-region specific volume and
glucose uptake.

The conditional dependence networks in Figure 1 reveal
what variables were likely to be conditionally dependent.
They do not reveal, however, the strength of this depend-
ence. These are given by the partial correlations and are
shown, alongside the Pearson correlations in Figure 2.
Pearson correlations were set to zero when the p-value
exceeds 0.05, while partial correlations were set to zero
when the corresponding edge inclusion probability is
below 50%. The Pearson correlation heatmap
(Figure 2(a)) is denser compared to the partial correlation
heatmap (Figure 2(b)). The average absolute Pearson cor-
relation was 0.17, while the average absolute partial correl-
ation was only 0.07. Moreover, just 27% of Pearson
correlations were set to zero versus 65% of partial correla-
tions. Strong Pearson correlations (with an absolute value
greater than 0.25) were fairly common (26%), while
strong partial correlations were less frequent (7%).

We applied GCGMs to AD primarily to discover the
conditional dependencies related to cognition (i.e.,
memory and executive function). Figure 3 presents the
ten variables that were most likely conditionally dependent
with memory. For each variable, the figure displays the
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Figure |. Visualization of conditional dependence among brain-region specific glucose uptake (G), brain-region specific gray matter
volume (V), and demographic variables. An edge between variables indicates a conditional dependence with a probability of at least
50%. The width of the edges denotes the size of this probability ranging from 50% to 100%. A blue (red) edge denotes a positive
(negative) partial correlation. (a) All variables; (b) Age and cognition; (c) Sex and cognition; (d) Biomarkers and cognition; (e)
Demographics and biomarkers; (f) Glucose uptake and volume.

probability of conditional dependence (left) and the mean amyloid stage (—0.25), and age (0.1). Figure 4 presents
partial correlation (right). Memory was partially correlated the same information for executive function. Executive
with hippocampus volume (0.25), being a woman (0.3), function was partially correlated with PCC volume (0.1)
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Figure 2. Pearson correlations (left) and partial correlations (right) among brain-region specific glucose uptake (G), brain-region
specific gray matter volume (V), and demographic variables. Pearson correlations are set to zero when p-value >0.05. Partial
correlations are set to zero when the corresponding edge inclusion probability is smaller than 50%. (a) Pearson correlation; (b) Partial

correlation.

and age (—0.1). For both education and amyloid stage, we
reported a 75% probability of conditional dependence with
executive function.

The main advantage of the Bayesian approach is its
ability to compute the uncertainty of its estimates. We
showcase this in Figure 5 which presents the probability
density plots of four selected partial correlations. The
spike at zero in some of these plots denotes the probability
that the partial correlation is zero, i.e., the probability that
the variables were conditionally independent. The partial
correlations depicted in the plots have low standard devia-
tions (< 0.06). In fact, across all pairs of variables, the
average standard deviation was just 0.02 with a maximum
of 0.06. The estimated means of the partial correlations,
as reported in Figure 2(b), were therefore likely to be
close to the true partial correlations.

So far, we have considered the results of 1022 patients
combined over all four disease stages: healthy, EMCI,
LMCI, and AD. Next, we examined how pathways vary
across different disease stages by analyzing each stage sep-
arately. The resulting networks are shown in Supplemental
Material 2. We observe that the disease-stage specific net-
works are sparser than the combined model, with approxi-
mately 80% of variable pairs being conditionally
independent in each of the four stage specific models, com-
pared to 65% in the combined model. The average partial
correlation value also decreased from 0.07 in the combined
model to around 0.05 in each of the disease-stage specific

models. This increased sparsity can be attributed to
reduced within-group variance. This reduced variance
made it harder for the model to deduce conditional depend-
encies. The reduced variance was observed in all variables,
but was particularly present in the memory and executive
function variables. The composite memory score, for
example, ranged between —3 and 3 in the combined
model. Among AD patients, however, it ranged between
—3 and 0.5. This is why, for this disease stage, memory
and executive function had almost no conditional depend-
encies left, see Supplemental Figure 1(e) in the
Supplemental Material. In later disease stages, reduced vari-
ance also caused age and sex to lose conditional dependen-
cies with APOE4 and the amyloid score. The hippocampus
volume was an exception to this trend and had more condi-
tional dependencies as the disease progresses. Of the path-
ways that we found for the combined model, some
continued to exist in all four disease stages. Examples are
the conditional dependencies between age and brain
volume, as well as between sex and brain volume. Other
pathways of the combined model only appeared in one
disease stage, predominantly in the EMCI stage. These
included the pathway linking age to memory via the
amyloid stage, or the pathway linking sex and memory
through the hippocampus volume.

We also conducted a separate analysis in which we
included the left and right brain regions separately. The
resulting network with 31 variables is shown in the
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Supplemental Figures 2(a) and 3 and was sparser compared
to the original, merged model. Specifically, 77% of condi-
tional dependencies had a lower probability than 0.5, com-
pared to 65% in the combined model. Additionally, the
average partial correlation decreased to 0.047 from 0.07
in the original model. Our previous conclusions remain
largely unchanged. Notably, sex continued to influence
memory through education, amyloid-beta, hippocampal
volume (V Hipp), and posterior cingulate cortex volume
(V PCC), while age still impacted memory through
amyloid-beta. However, some associations no longer held:
age was no longer conditionally dependent with hippocam-
pal volume, and amyloid-beta no longer associated with
executive function. Separating the left and right brain
region analysis, also provided extra insights: the volumes
of the left and right brain regions were highly partially cor-
related, as is their glucose metabolism. Furthermore, the left
hippocampal volume was specifically linked to memory,
while the left PCC showed a gender-related association.
Finally, the association between volume and metabolism
was notably stronger within the same brain regions.

Discussion

This section interprets the results of the previous section
and compares them with the existing results in the literature.

We also discuss the limitations of our work and end with a
conclusion.

Interpretation of results

The interpretation of all conditional (in)dependencies and
partial correlations goes beyond the scope of this paper.
Instead, we interpret here those associations that we deem
relevant.

We first elucidate the conditional dependencies (direct
and indirect) between the demographic variables (age,
sex, and education) and cognition (memory and executive
function), starting with age. It is well-established in the lit-
erature that age is the biggest risk factor for AD.! In line
with this, we found negative Pearson correlations between
age and cognition (Figure 2(a)) and a negative partial correl-
ation between age and executive function (Figure 4).
However, we found a surprising positive partial correlation
between age and memory. Specifically, we estimated that
age and memory are conditionally dependent with 92%
and that their partial correlation is between 0.05 and 0.2
with a 90% probability (Figure 5(a)). At first glance, this
result suggested a possible limitation in the model.
However, we found a similar result using a linear regression
using the same 19 variables of our model with memory as a
dependent variable: the resulting regression coefficient of
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Figure 5. Estimated probability density plots of the partial correlations of four selected pairs of variables. (a) Age and memory; (b)
Hippocampus volume and memory; (c) Amyloid stage and memory; (d) Executive function and education.

age was positive (0.011) and significant (p-value <0.001).
The positive partial correlation and regression coefficient
suggested that there was a confounding variable not in
our model through which age positively associated with
memory. A potential candidate for this confounder is life-
style. As noted in literature, 45% of AD cases can be attrib-
uted to 14 lifestyle related risk factors,' of which only
education was included in our model. The older patients
in our dataset might be the ones with a better lifestyle,
and therefore a better memory.

The positive partial correlation between age and memory
also suggested that the main indirect pathways through
which age contributes to memory decline were captured

in our model. Figure 1(b) shows two such pathways.
Aging increased amyloid-beta deposition and reduced the
gray matter volume of the hippocampus and PCC, impair-
ing memory and executive function. Both associations
were confirmed in the literature."***° The GCGM model
allowed us to estimate the uncertainty of these estimates.
For example, with more than 95% certainty we know that
the partial correlation between the amyloid stage and
memory was between —0.15 and —0.35 (Figure 5(c)).
Similarly, we observed that with almost 100% certainty
the partial correlation between memory and the gray
matter volume of the hippocampus ranged between 0.2
and 0.35 (Figure 5(b)).
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Next, we look at the relation between sex and cognition.
We found a positive partial correlation between being a
woman and memory (Figure 2(b)). The Pearson correlation
between sex and memory was weaker (Figure 2(a)). This
suggested that there may exist indirect conditional depend-
ency pathways between sex and cognition, each of which
dampening the positive effect of the observed direct
partial correlation. Figure 1(c) depicts four such pathways.
First, women in our dataset have spent, on average, one year
less in education. This effect was also observed in litera-
ture.'>>! The density plot in Figure 5(d) suggested that
education and executive function were conditionally
dependent with a probability of 78% with a partial correl-
ation ranging between 0 and 0.2. Second, we observed a
positive partial correlation between being a woman and
amyloid accumulation. An association also found by
others.™ This association may provide evidence that
amyloid-beta deposition is associated with our brain’s
immune system,” which was reported to be stronger in
women.”* Third, we found that women have smaller hippo-
campal volumes. A conclusion also found in a large study
with 18600 individuals.’® Lastly, we found a negative
partial correlation between sex and PCC gray matter
volume. We found a 40% chance that memory was condi-
tionally dependent on education (Figure 3) and a 78%
chance that executive function was conditionally dependent
on education (Figure 4). This is in line with the prevailing
notion that education improves cognition and reduces the
risk of developing AD."

Next, we identified the conditional dependency path-
ways between neuro-imaging variables (gray matter
volume, glucose uptake and amyloid-beta accumulation)
and cognition. Figure 1(d) depicts all such dependencies.
We reported a conditional dependency between the hippo-
campal volume and memory with a probability of one,
see Figure 3. This supported the established notion that
the hippocampus is associated with memory.>® Figure 4
shows an almost certain conditional dependency between
the PCC volume and executive function, confirming a
theory that PCC is involved in attention.”’” Our findings sug-
gested that the high Pearson correlations between brain-
region specific volume and cognition (Figure 2(a)) were
solely due to each region’s conditional dependence with
the hippocampus and PCC volume. Corrected for other
variables, we found no relation between glucose metabol-
ism and cognition. The link between brain-region specific
glucose uptake and cognition has not been widely
studied, although there is evidence for an association
between PCC glucose uptake and cognition.”® We found
a conditional dependence between these two variables
with a 50% probability, but the corresponding partial correl-
ation was close to zero (Figure 3). We observed that the
presence of at least one allele of the APOE4 gene was par-
tially correlated with amyloid-beta accumulation, which, in
turn, was conditionally dependent with both executive

function and memory. This came as no surprise, as this sup-
ported the widely accepted hypothesis that the presence of
APOEA4 alleles is linked to amyloid-beta accumulation and
cognitive decline.*®

Third, we investigated the conditional dependencies
between demographic variables (sex and age) and brain-
region specific glucose uptake and volume. Figure 1(e)
depicts such dependencies. We found that age and gender
showed more conditional dependencies with brain-region
specific volume than with brain-region specific glucose
uptake. Age was negatively partially correlated with the
volume of the putamen, hippocampus, PCC and thalamus.
Age induced atrophy in these regions was also described
in literature.”® We reported negative partial correlations
between being female and the volume of three brain
regions: the hippocampus, precuneus and PCC. We also
found a positive partial correlation between being a
woman and the volume of the putamen, an association
also reported by others.®® Concerning glucose uptake, age
was only negatively partially correlated with the caudate.
This aligns with earlier findings that the precuneus cortex,
hippocampus, thalamus, and putamen are among the
regions whose metabolism is least affected by aging.®!

Lastly, we looked at the conditional dependencies
between brain-region specific volume and glucose metabol-
ism. They are depicted in Figure 1(f). We found ten such
conditional dependencies. Supplemental Figure 4 in the
Supplemental Material shows that these conditional
dependencies increased in number as the disease pro-
gresses. Among EMCI patients, we found almost no condi-
tional dependencies between brain volume and glucose
uptake, whereas in AD patients several such conditional
dependencies can be observed. Among AD patients, the
volume and glucose uptake of the hippocampus were posi-
tively partially correlated. The same was true for the thal-
amus and the putamen. This was in line with the
hypothesis that in AD reduced glucose metabolism pre-
cedes neuronal loss and brain volume reduction.®’

Limitations

Our Bayesian approach to GCGMs has three main limita-
tions. First, it becomes slow for practical applications
when the number of variables p and the number of observa-
tions n increases. The GCGM discussed in this paper had
p =19 variables and n = 1022 observations and ran
within 10 minutes. A larger model, however, with more
than 100 variables and/or more than 5000 observations
would be infeasible for a Bayesian GCGM. Bayesian uncer-
tainty evaluation relies on an MCMC algorithm that itera-
tively samples new graphs and precision matrices, both of
a dimension p X p. Increasing p therefore exponentially
increases the running time and memory requirements of
the model. Moreover, at every MCMC iteration, the algo-
rithm needs to resample every non-continuous variable n
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times. This resampling allows for the inclusion of binary,
discrete and ordinal variables, but leads to a lack of scalabil-
ity in the number of observations.

The second limitation of the GCGM is its linearity
assumption. More specifically, partial correlations represent
the strength of a linear relationship with the effect of other
variables removed. Partial correlations can be over-, or
underestimated, when the underlying relationship is not
linear.

Lastly, GCGMs are undirected. This comes with advan-
tages. GCGMs can deal with cyclic networks, require rela-
tively few observations and do not need prior knowledge of
the structure. However, the undirected nature of GCGMs
make them not suited for identifying causal effects, such
as the impact of a treatment on amyloid-beta accumulation,
or the effect of a lifestyle change on cognition. The undir-
ected networks provided by GCGMs can, however, be
used as a starting point for causal analysis.

The particular application of GCGMs described in this
article also comes with three caveats, each opening an
avenue for further research. First, apart from education,
we did not include any lifestyle variables in our model.
These variables account for an estimated 45% of AD
cases' and are a probable cause for the surprising positive
partial correlation between old age and memory. Second,
Bayesian models allow for the inclusion of prior knowl-
edge. For simplicity, we choose in this article for an unin-
formative prior in which every pair of variables is
conditionally dependent with 20%. Future work could use
AD literature to construct an informed prior, certainly for
variable pairs whose association is known, such as
APOE4 and the amyloid stage. The use of an informed
prior could lead to a more realistic conditional dependence
structure. Lastly, this work did not consider temporal data,
and therefore, did not cover the progression of AD over
time. Future research could add the disease stage over
time as a set of variables. This would allow the model to dis-
cover the most important factors contributing to the conver-
sion of CN to EMCI to LMCI, and ultimately, to AD.

Conclusions

In this article we present a Bayesian approach to GCGMs.
This approach has three capabilities: (i) the estimation of
an undirected network depicting the conditional dependen-
cies and partial correlations among variables, (ii) the quan-
tification of the uncertainty of these estimates and, (iii) the
inclusion of all types of variables whether normally distrib-
uted or not. Bayesian GCGMs have been successfully
applied in other domains,”_32 but remain, to the best of
our knowledge, unexplored in the AD domain.

Our GCGM uncovered the partial correlations and con-
ditional dependencies among demographic data, the
global amyloid stage, cognitive test scores, brain-region
specific gray matter volume, and brain-region specific

glucose uptake. Our Bayesian approach enabled us to esti-
mate the uncertainties of these estimates too.

As expected, we observed that the partial correlations
and their corresponding conditional dependency networks
were sparser than the commonly used Pearson correlation
or covariance measures. Our study confirmed existing
knowledge, but also opened up new hypotheses. We
found three indirect pathways through which old age
reduces cognition: hippocampal volume loss, PCC
volume loss, and amyloid-beta accumulation. Moreover,
we found that women performed better on cognitive tests,
but also discovered four indirect pathways that dampen
this effect: lower hippocampal volume, lower PCC
volume, more amyloid-beta accumulation, and less educa-
tion. We also found that the hippocampus and PCC
volumes are conditionally dependent on cognition, but
found limited conditional dependence between brain-region
specific glucose uptake and cognition. We found that age
and sex were more conditionally dependent with brain-
region specific volume than with brain-region specific
glucose uptake. Lastly, we discovered that the conditional
dependence between brain-region specific volume and
glucose metabolism increased as the disease progresses.
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