

Validation of Amyloid Chronicity in Autosomal Dominant Alzheimer Disease

Julie K. Wisch¹ | Nicole S. McKay² | Matthew D Zammit³ | Bradley T Christian³ |
 Stephanie A. Schultz⁴ | Peter R Millar⁵ | Nicolas R. Barthélémy⁶ | Natalie S Ryan⁷ |
 Alan E. Renton⁸ | Lisa Vermunt⁹ | Nelly Joseph-Mathurin¹⁰ | Zahra Shirzadi¹¹ |
 Jeremy F. Strain¹⁰ | Patricio Chrem¹² | Alisha Daniels¹ | Jasmeer P. Chhatwal¹³ |
 Carlos Cruchaga¹⁴ | Laura Ibanez¹⁵ | Mathias Jucker¹⁶ | Gregory S Day¹⁷ |
 Jae-Hong Lee¹⁸ | Johannes Levin¹⁹ | Jorge J. Llibre-Guerra¹ | David Aguillon²⁰ |
 Jee Hoon Roh¹⁸ | Charlene Supnet-Bell²¹ | Chengjie Xiong²² |
 Suzanne E. Schindler²² | Guoqiao Wang²³ | Yan Li² | Robert Koepp²⁴ |
 Clifford R. Jack Jr.²⁵ | John C. Morris²⁶ | Eric McDade²⁷ | Randall J. Bateman²⁸ |
 Tammie L.S. Benzinger²² | Beau Ances¹ | Tobey J. Betthauser²⁹ | Brian A. Gordon³⁰ |
 the Dominantly Inherited Alzheimer Network

¹Washington University in St. Louis School of Medicine, St. Louis, MO, USA

²Washington University in St. Louis, School of Medicine, St. Louis, MO, USA

³Waisman Center, University of Wisconsin-Madison, Madison, WI, USA

⁴Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA

⁵Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA

⁶Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA

⁷UK Dementia Research Institute at UCL, London, United Kingdom

⁸Icahn School of Medicine at Mount Sinai, New York, NY, USA

⁹Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, North Holland, Netherlands

Abstract

Background: Alzheimer Disease (AD) pathology evolves over decades, and understanding this progression is critical to the understanding of the disease and timing therapeutic interventions. Since individuals with Autosomal Dominant AD (ADAD) develop symptoms around the same age as their parent, it is possible to predict symptom onset and stage individuals by their estimated years to symptom onset (EYO). This approach does not generalize to other forms of AD, thus there is a pressing need for the timecourse of ADAD to be defined in broadly relevant terms. The objective of this project is to validate the Sampled Iterative Local Approximation (SILA) algorithm in a cohort with a known disease timecourse. SILA generates an estimate of time from amyloid positivity (A_{time}) based on longitudinal PET data.

Method: We evaluated A_{time} in a longitudinal ADAD sample ($N = 316$) with PET PiB data in three ways. First, we compared predicted age at amyloid positive (A+) to observed age at A+ for individuals who became A+ during enrollment. Next, using linear regression, we compared estimated age at A+ to estimated age at symptom

¹⁰Washington University School of Medicine, St. Louis, MO, USA

¹¹Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

¹²Fleni, Buenos Aires, Argentina

¹³Massachusetts General Hospital, Boston, MA, USA

¹⁴Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA

¹⁵Hope Center for Neurological Disorders, St. Louis, MO, USA

¹⁶German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany

¹⁷Mayo Clinic in Florida, Jacksonville, FL, USA

¹⁸Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea, Republic of (South)

¹⁹Department of Neurology, LMU University Hospital, LMU Munich, Munich, Munich, Germany

²⁰Neurosciences Group of Antioquia, University of Antioquia, Medellín, Colombia

²¹Washington University School of Medicine in St. Louis, St. Louis, MO, USA

²²Washington University in St. Louis, St. Louis, MO, USA

²³Washington University School of Medicine, St Louis, MO, USA

²⁴University of Michigan, Ann Arbor, MI, USA

²⁵Mayo Clinic, Rochester, MN, USA

²⁶Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA

²⁷Washington University St. Louis School of Medicine, St. Louis, MO, USA

²⁸The Tracy Family SILQ Center, St. Louis, MO, USA

²⁹University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA

³⁰Washington University School of Medicine, Saint Louis, MO, USA

Correspondence

Julie K. Wisch, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
Email: julie.wisch@wustl.edu

onset (EYO=0). Finally, we used generalized additive models to compare the amount of variance in concurrent cognitive performance explained both A_{time} and EYO.

Result: We observed a mean average error of 1.15 years between actual age at A+ ($N = 26$) and the SILA-predicted A_{time} . Across all participants, SILA-estimated age at A+ explained 39% of the variance in estimated age at symptom onset ($\beta = 0.918, p < 0.0001$). Finally, we observed a nonlinear association between cognition and both A_{time} and EYO. A_{time} explained 19% of the variance in the general cognitive composite while EYO explained 43% of the variance.

Conclusion: SILA produces a valid estimate of time-from-amyloid positivity in ADAD. This work allows for disease stage in ADAD to be compared to staging for broad forms of AD, which was not previously possible using EYO. However, this work also illustrates that there is a high degree of heterogeneity in preclinical disease duration that is not explained by amyloid alone.

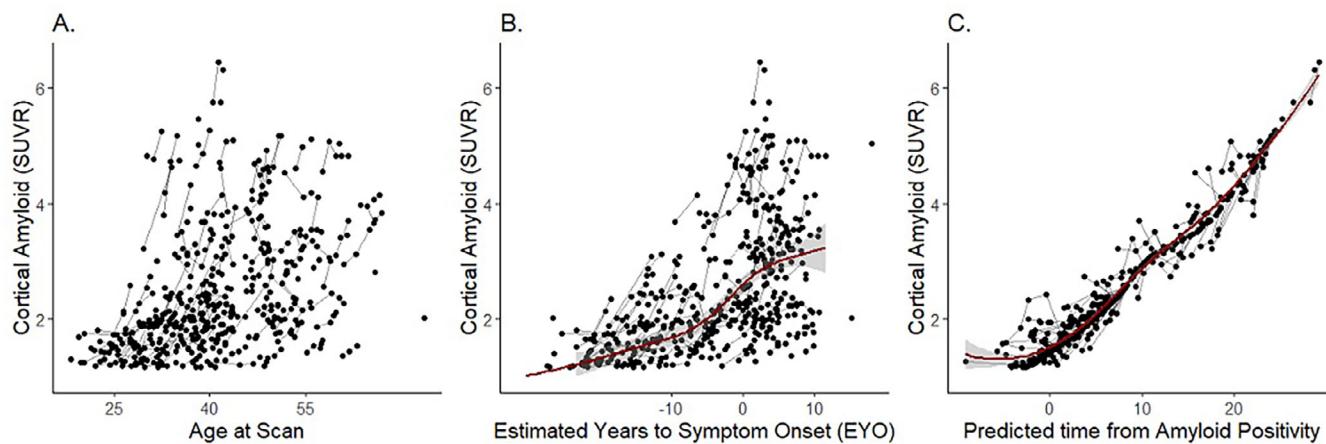


Figure 1. Cortical amyloid burden increases across the lifespan for individuals with Autosomal Dominant Alzheimer Disease (ADAD) (A). This pathological accumulation occurs prior to symptom onset (B), and can be translated into a chronological estimate of time from amyloid positivity using the Sampled Iterative Local Approximation (SILA) algorithm (C).

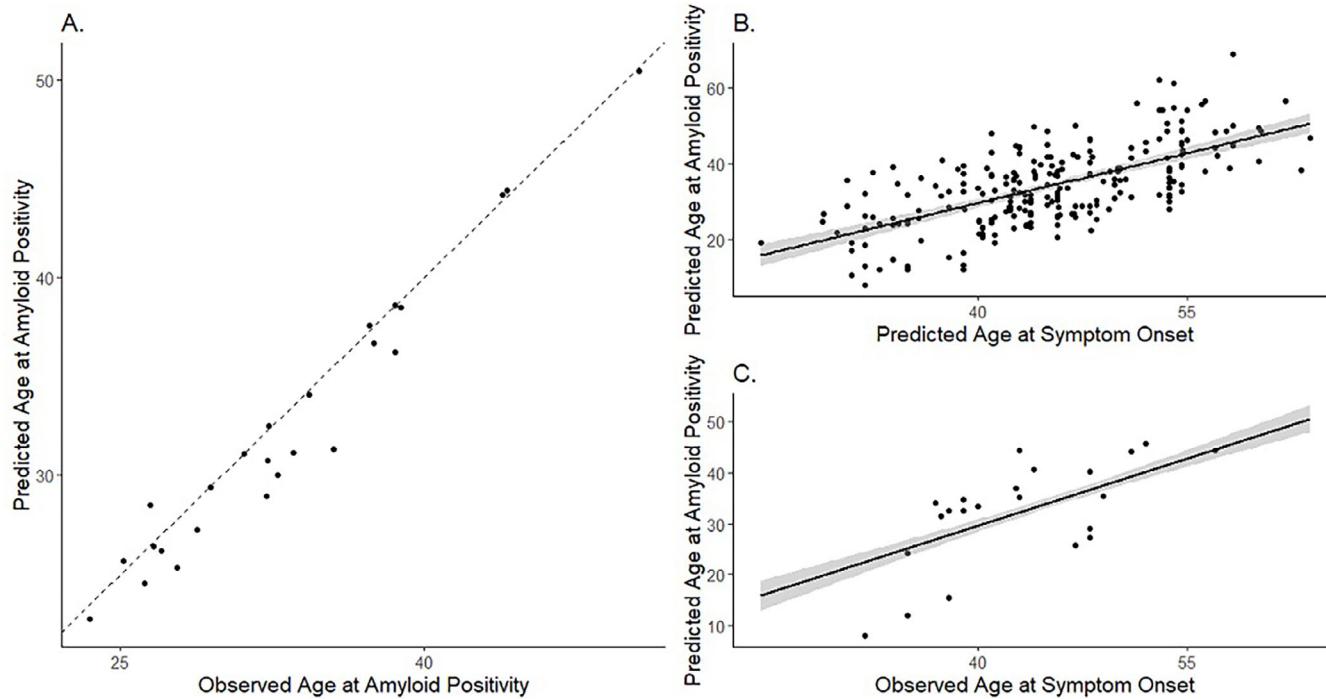


Figure 2. In individuals who convert from amyloid negative to amyloid positive during study enrollment ($N = 28$) we observe a mean average error in model prediction of 1.15 years (A). Across the study cohort, using the predicted conversion to symptomatic Alzheimer Disease (AD) age, we find that the model predicted age at amyloid positivity explains 39% of the variance in symptom onset (B); however, when we limit to cohort to only include participants who convert from asymptomatic to symptomatic AD during study enrollment, we observe a high correspondence between age at amyloid positive and age at symptom onset, with a roughly 10 years elapsing between when individuals become amyloid positive and when they become symptomatic (C).

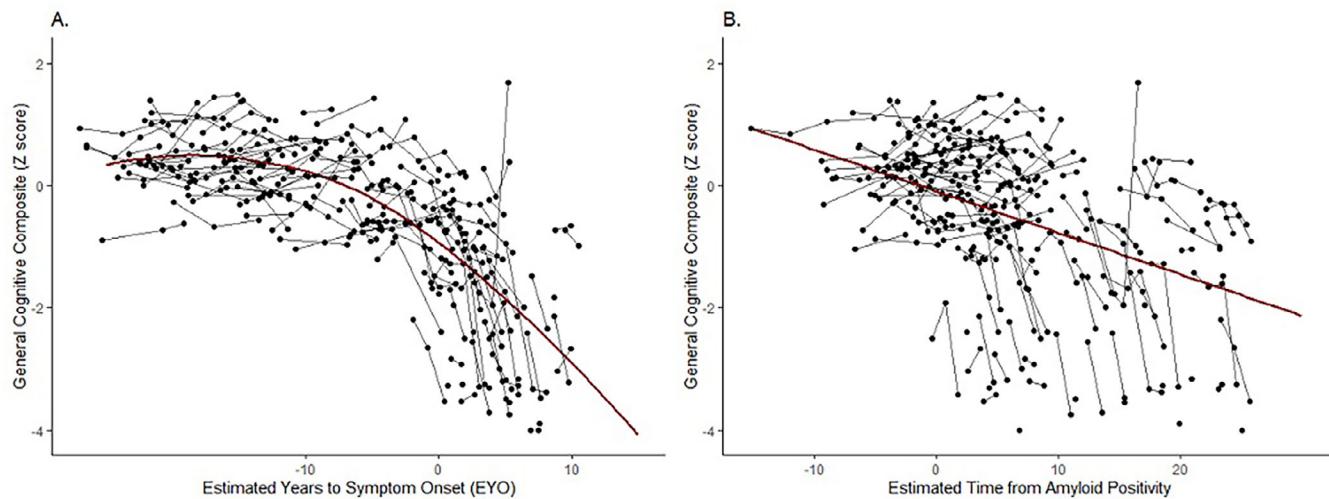


Figure 3. Performance on a general cognitive composite reliable declines around the time of symptom onset in individuals with Autosomal Dominant Alzheimer Disease (A). Cognitive performance does decline after individuals have converted to amyloid positive; however, there is a greater degree of heterogeneity (B).