

MOLECULAR AND CELL BIOLOGY

Decoding transcriptional regulation of microglia associated with amyloid plaques

Johannes C.M. Schlachetzki¹ | Yi Zhou² | Nathan Spann² | Kilian Leon Kleemann³ |
Roisin M. McManus⁴ | Michael T. Heneka⁵ | Oleg Butovsky³ | Christopher K. Glass¹

¹University of California, San Diego, San Diego, CA, USA

²UCSD, La Jolla, CA, USA

³Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA

⁴German Center for Neurodegenerative Diseases (DZNE), Bonn, NRW, Germany

⁵Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg

Correspondence

Johannes C.M. Schlachetzki, University of California, San Diego, San Diego, CA, USA.
Email: jschlachetzki@ucsd.edu

Abstract

Background: Beyond the progressive accumulation of amyloid-beta and hyperphosphorylated tau, Alzheimer's disease (AD) is accompanied by phenotypic changes in microglia, the innate immune cells of the brain. In particular, microglia in the vicinity of Amyloid-plaques, also known as MGND or DAM, are defined by distinct changes in their gene expression signature, e.g., upregulation of *Trem2* mRNA. However, the precise transcriptional mechanism that drives microglia phenotype in response to amyloid is not defined.

Method: Here, we isolated microglia from the APP/PS1 transgenic mouse model followed by ATAC-seq.

Result: We provide evidence for a model in which differential activation of a common set of transcriptional regulators that includes members of the MITF/TFE, AP-1 and EGR transcription factor families drives the amyloid-plaque associated microglia phenotype.

Conclusion: Collectively, these findings reveal the framework of the transcriptional circuitry that is used to establish a range of neurodegenerative pathology-associated microglia phenotypes.