

Structure-function decoupling in genetic frontotemporal dementia

Kamen A Tsvetanov^{1,2} | P Simon Jones¹ | Maura Malpetti¹ | Timothy Rittman¹ | Arabella Bouzigues³ | John van Swieten⁴ | Lize Jiskoot⁵ | Harro Seelaar⁶ | Barbara Borroni⁷ | Enrico Premi⁸ | Raquel Sanchez-Valle⁹ | Fermin Moreno¹⁰ | Robert Laforce Jr.¹¹ | Caroline Graff¹² | Matthis Synofzik^{13,14} | Daniela Galimberti^{15,16} | Mario Masellis¹⁷ | Carmela Tartaglia¹⁸ | Elizabeth Finger¹⁹ | Rik Vandenberghe^{20,21} | Alexandre de Mendonça²² | Fabrizio Tagliavini²³ | Isabel Santana^{24,25} | Simon Ducharme^{26,27} | Christopher Butler²⁸ | Alexander Gerhard^{29,30} | Johannes Levin³¹ | Markus Otto³² | Sandro Sorbi^{33,34} | Lucy L. Russell³ | Jonathan D. Rohrer³ | James B Rowe^{1,35} | the Genetic FTD Initiative, GENFI

¹Department of Clinical Neurosciences, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom

²Department of Psychology, University of Cambridge, Cambridge, United Kingdom

³Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom

⁴Department of Neurology and Alzheimer Center, Erasmus Medical Center, Rotterdam, South Holland, Netherlands

⁵Erasmus MC University Medical Center, Rotterdam, Rotterdam, Netherlands

⁶Department of Neurology and Alzheimer Center, Erasmus Medical Center, Rotterdam, Zuid Holland, Netherlands

⁷University of Brescia, Brescia, Lombardy, Italy

⁸University of Brescia, Brescia, Italy

⁹Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain

¹⁰Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Spain

¹¹Clinique Interdisciplinaire de mémoire, CHU de Québec - Université Laval, Quebec City, QC, Canada

¹²Karolinska Institutet, Department NVS, Division of Neurogeriatrics, Stockholm, Sweden

¹³Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany

¹⁴German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany

¹⁵University of Milan, Milan, MI, Italy

¹⁶Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Neurodegenerative Diseases Unit, Milan, Italy

¹⁷LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, ON, Canada

¹⁸Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Disease, Toronto, ON, Canada

¹⁹University of Western Ontario, London, ON, Canada

²⁰University Hospitals Leuven, Leuven, Belgium

This is an open access article under the terms of the [Creative Commons Attribution](#) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2025 The Alzheimer's Association. *Alzheimer's & Dementia* published by Wiley Periodicals LLC on behalf of Alzheimer's Association.

²¹Laboratory for Cognitive Neurology, KU Leuven, Leuven, Leuven, Belgium

²²Faculty of Medicine, University of Lisbon, Lisbon, Portugal

²³Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologica Carlo Besta, Milan, -, Italy

²⁴Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Coimbra, Portugal

²⁵Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, -, Portugal

²⁶Department of Psychiatry, McGill University, Montreal, QC, Canada

²⁷McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada

²⁸University of Oxford, Oxford, United Kingdom

²⁹Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, -, United Kingdom

³⁰Department of Geriatric Medicine, Klinikum Hochsauerland, Arnsberg, Arnsberg, Germany

³¹Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich; German Center for Neurodegenerative Diseases (DZNE), Munich; Munich Cluster of Systems Neurology, Munich, Germany

³²University Hospital Ulm, Ulm, -, Germany

³³IRCCS Fondazione Don Carlo Gnocchi, Florence, Florence, Italy

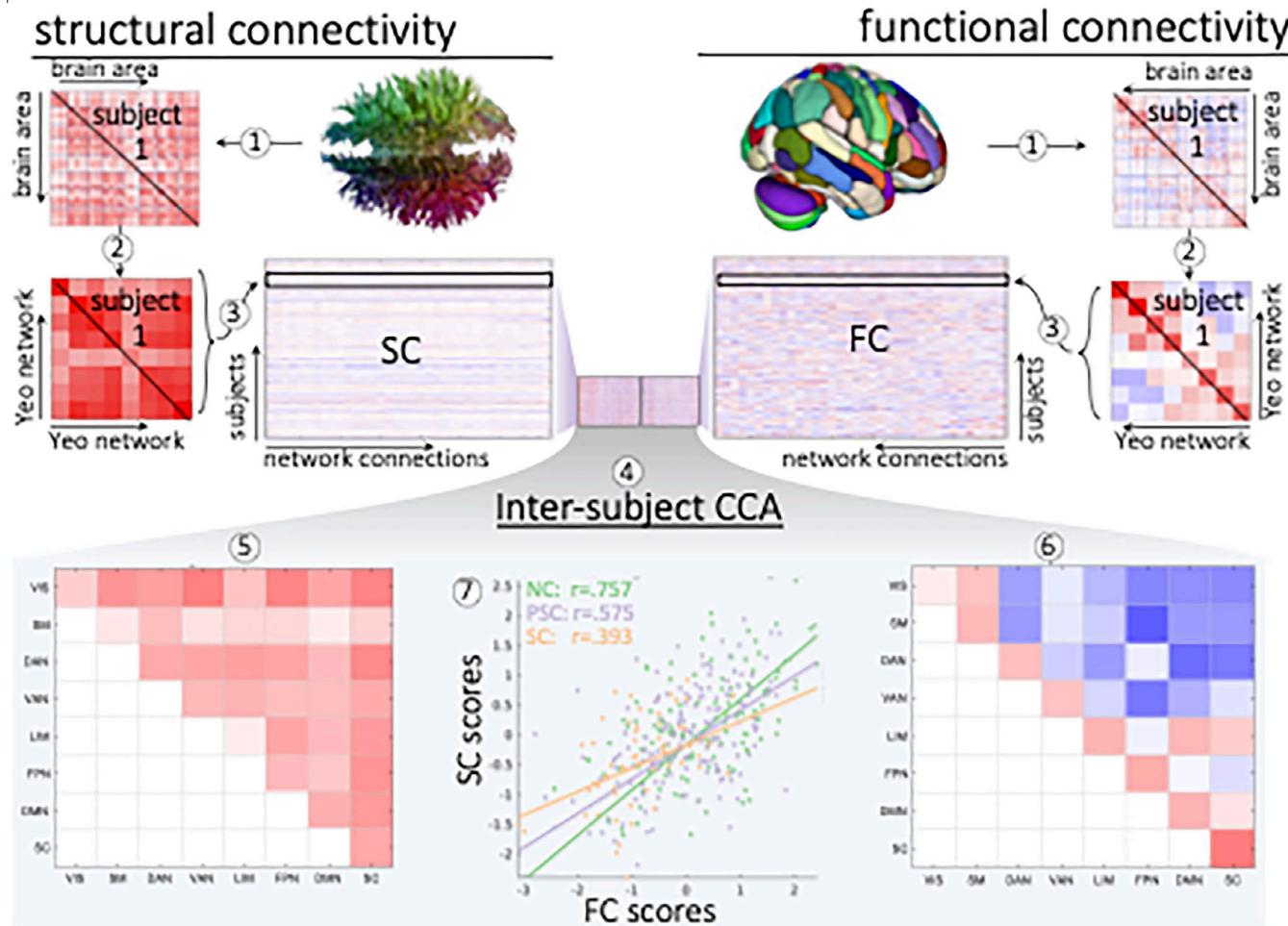
³⁴Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy

³⁵MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom

Correspondence

Kamen A Tsvetanov, Department of Clinical Neurosciences, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom.
Email: kat35@cam.ac.uk

Abstract


Background: Functional network integrity is important for maintaining cognitive performance during the 10-20 year presymptomatic period of frontotemporal dementia (FTD), conferring resilience to advancing neuropathology and atrophy. The extent to which functional integrity relies on preserved structural connectivity is unclear. Here, we test the relationship between functional connectivity and structural connectivity, termed structure-function coupling, against genetic risk for FTD and disease progression.

Method: We studied 56 symptomatic and 165 pre-symptomatic FTD-mutation carriers, and 141 family members without mutations, from the GENFI cohort. Diffusion weighted imaging and functional magnetic resonance imaging (Siemens MR platforms) were acquired and analysed using established approaches to quantify participant-level structural and functional connectomes (Figure 1-(1)). Connectomes were defined in the Brainnetome Atlas and re-mapped onto a subcortical network and seven resting-state networks based on the Yeo Networks (Figure 1-(2)). An inter-subject regularized canonical correlation analysis (CCA) with permutation-based cross-validation was used to jointly analyse the structural and functional connectomes (Figure 1-(3-4)). Second-level analysis with robust multiple linear regression models tested for differences between non-carriers, pre-symptomatic carriers and symptomatic carriers in the strength of association between structural and functional CCA subject scores. Age, sex, head motion and scanner site were included as covariates.

Result: Canonical correlation analysis identified significant components linking structural and functional connectivity. The first component ($r=0.656$, $p <0.001$) reflected a structural connectivity pattern with high within- and between-networks loadings (Figure 1-(5)) with strong within-networks functional connectivity and weak-to-negative between-network functional connectivity (Figure 1-(6)). This component associated structural integrity with function segregation, whereby individuals with high structural connectivity within and between networks exhibit greater functional

network segregation as shown by strong within-network functional connectivity and weak between network connectivity. The strength of this structure-function coupling was greater for non-carriers compared to pre-symptomatic carriers (Figure 1-(7)). Symptomatic carriers showed minimal relationship between structural and functional scores, indicating structure-function decoupling, consistent with the hypothesis that cognitive decline is triggered by critical decoupling of previously synergistic neural systems.

Conclusion: Our findings demonstrate progressive de-coupling between structural connectivity and functional segregation over the course of genetic frontotemporal dementia. These results have implications for designing pre-symptomatic disease-modifying 'preventative' trials, supported by imaging-based surrogate markers of neural system dynamics.

