

Developing a Novel Reference Region for PI-2620-PET Imaging to Facilitate Assessment of 4-Repeat Tauopathies

Lukas Frontzkowski^{1,2} | Mattes Gross³ | Sebastian Roemer-Cassiano^{1,4,5} |
 Carla Palleis^{6,7,8,9,10} | Amir Dehsarvi¹ | Sabrina Katzdobler^{11,12,13,14} |
 Anna Dewenter¹ | Anna Steward^{1,15} | Davina Biel¹ | Fabian Hirsch¹ |
 Johannes Gnörich^{9,16} | Johannes Levin^{13,14,17,18,19} | Andrew W. Stephens²⁰ |
 Andre Mueller²⁰ | Norman Koglin²⁰ | Gérard N Bischof²⁰ | Gabor G. Kovacs^{21,22,23} |
 Günter U Höglinder^{6,11,24} | Matthias Brendel^{2,6,11} | Nicolai Franzmeier^{25,26}

¹Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Bavaria, Germany

²Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Bavaria, Germany

³Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Bavaria, Germany

⁴Department of Neurology, University Hospital, LMU Munich, Munich, Bavaria, Germany

⁵Max Planck School of Cognition, Leipzig, Sachsen, Germany

⁶German Center for Neurodegenerative Diseases (DZNE), Munich, Germany

⁷University Hospital, Ludwig-Maximilians-Universität, Munich, Germany

⁸Department of Neurology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Bavaria, Germany

⁹University Hospital, LMU Munich, Munich, Germany

¹⁰Munich Cluster for Systems Neurology (SyNergy), Munich, Germany

¹¹Munich Cluster for Systems Neurology (SyNergy), Munich, Bavaria, Germany

¹²Department of Neurology, University Hospital, LMU, Munich, Germany

¹³University Hospital, LMU Munich, Munich, Bavaria, Germany

Abstract

Background: Neurodegenerative 4-repeat (4R) tauopathies commonly manifest as progressive supranuclear palsy (PSP). PSP patients show elevated PI-2620-PET in subcortical 4R tau predilection sites (e.g., globus pallidus), suggesting PI-2620-PET as a promising 4R tau neuroimaging candidate. However, optimal quantification of PI-2620-PET in 4R tauopathies remains challenging, as conventional cerebellar tau-PET reference regions also accumulate 4R tau. We aimed to use unbiased image-derived input function (IDIF) PET data to determine an optimized PET reference region for in vivo quantification of 4R tau.

Methods: We obtained 60-minute dynamic PI-2620-PET in 54 PSP Richardson Syndrome (PSP-RS) patients and 19 healthy controls (HC), applying IDIF-modeling using carotid timeseries to assess unbiased PI-2620-PET binding and determine total distribution volume (VT). Through an iterative approach, we intensity-normalized VT-images against white-matter regions in the Hammers brain atlas, identifying regions where intensity-normalized pallidum PET values showed the largest PSP-RS vs. HC differences. White-matter regions with strongest PSP-RS vs. HC differences surviving multiple-comparison correction were summarized into a single reference region spanning bilateral temporo-orbital white-matter. This ROI was then used to determine SUVRs using conventional 20-40 minute PI-2620-PET data in PSP-RS, a PSP-non-RS validation sample ($n = 63$), as well as non-tau disease controls (i.e., alpha-synucleinopathies, $n = 20$; Alzheimer's disease, $n = 23$).

This is an open access article under the terms of the [Creative Commons Attribution](#) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2025 The Alzheimer's Association. *Alzheimer's & Dementia* published by Wiley Periodicals LLC on behalf of Alzheimer's Association.

¹⁴German Center for Neurodegenerative Diseases (DZNE), Munich, Bavaria, Germany

¹⁵Institute for Stroke and Dementia Research, LMU, Munich, Munich, Germany

¹⁶Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany, Munich, Germany

¹⁷Neurology, Klinikum der Ludwig-Maximilians Universität München, Munich, Germany

¹⁸Department of Neurology, LMU University Hospital, LMU Munich, Munich, Munich, Germany

¹⁹Munich Cluster for Systems Neurology (SyNergy), Munich, Munich, Germany

²⁰Life Molecular Imaging GmbH, Berlin, Germany

²¹Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada

²²Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada

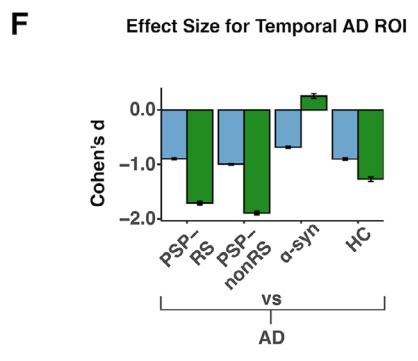
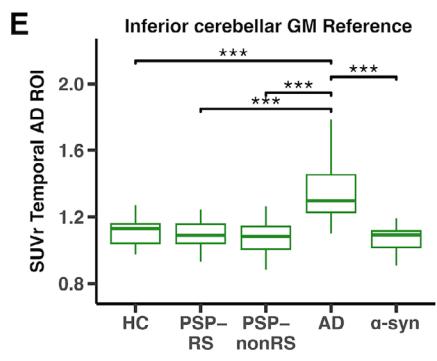
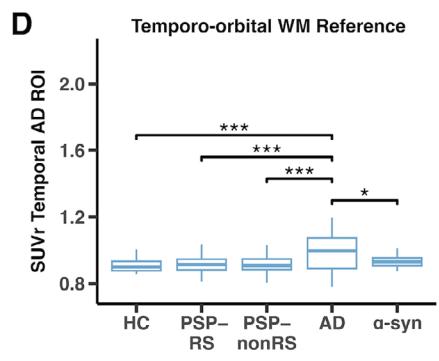
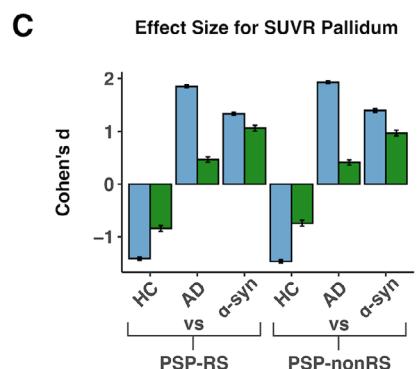
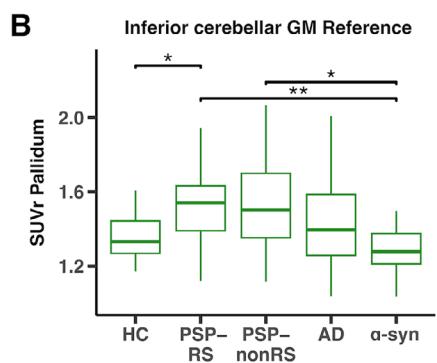
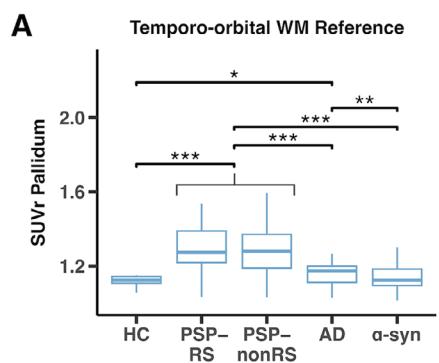
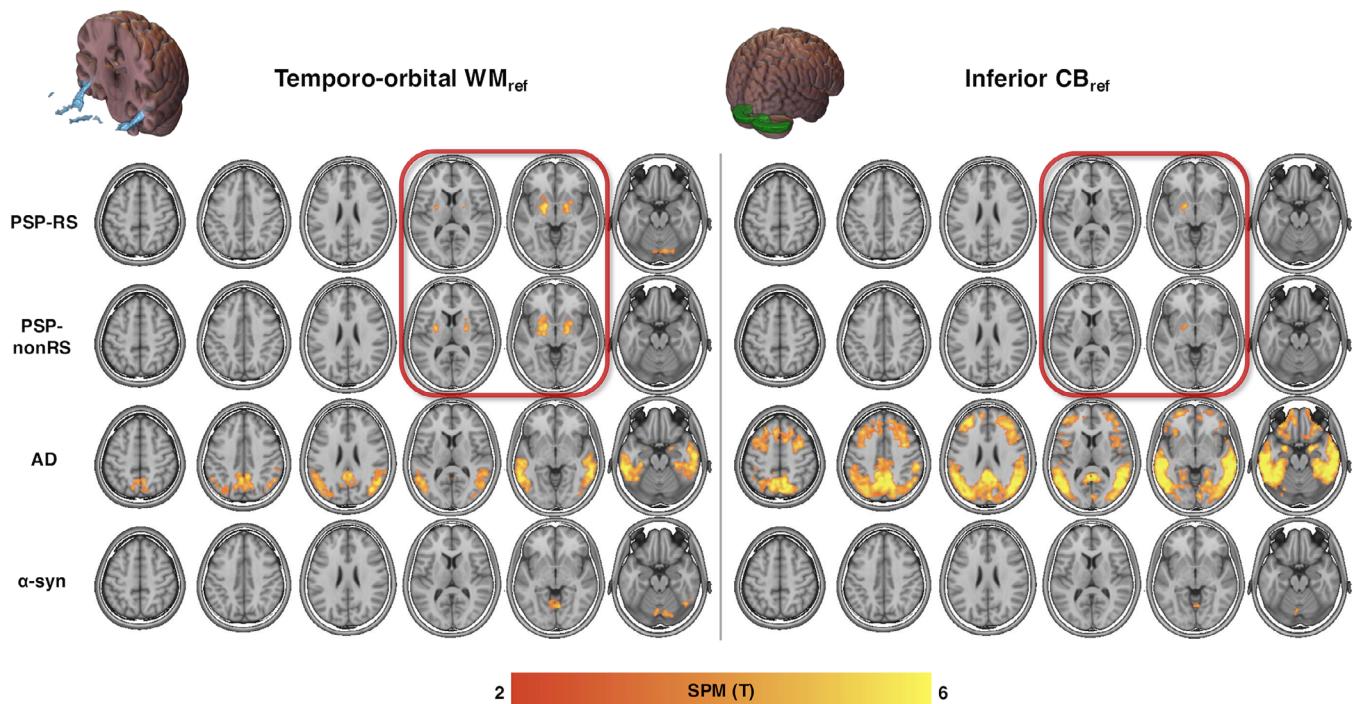
²³Rossy PSP Program, University Health Network and the University of Toronto, Toronto, ON, Canada

²⁴Department of Neurology, Klinikum der Ludwig-Maximilians Universität München, Munich, Germany

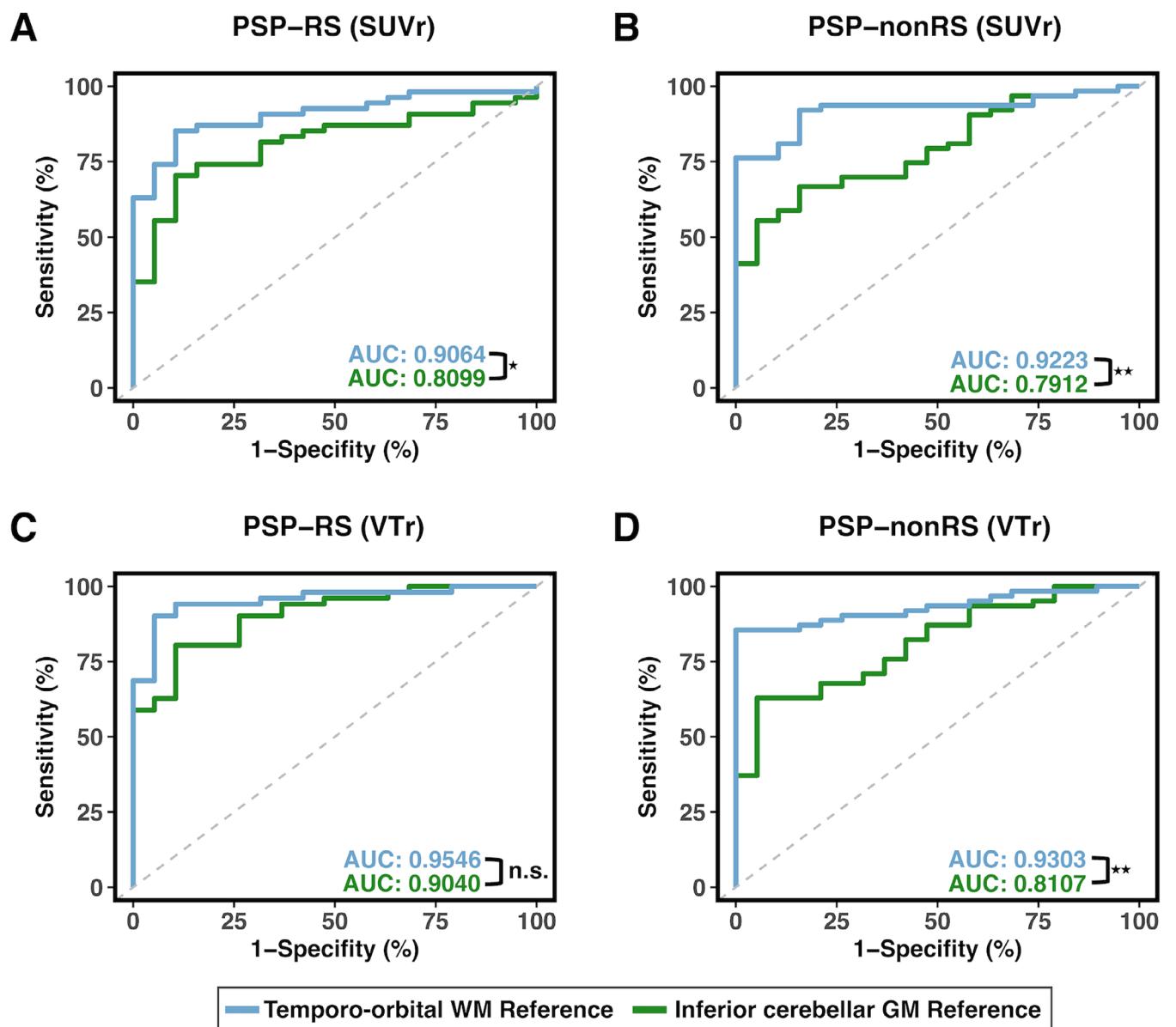
²⁵University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Psychiatry and Neurochemistry, Gothenburg, Sweden

²⁶Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU, Munich, Bavaria, Germany

Correspondence








Lukas Frontzkowski, Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Bavaria, Germany.

Email:


Lukas.Frontzkowski@med.uni-muenchen.de

Results: Using PI-2620 SUVRs obtained with the temporo-orbital white-matter reference, we detected strong PSP-RS vs. HC group differences in basal ganglia SUVRs using voxel-wise comparisons ($p < 0.001$, FWE-cluster corrected). Similar basal ganglia differences were detected for PSP-non-RS vs. HC, but not for alpha-syn (no group differences) or AD vs. HC (cortical AD-like group differences). In contrast, minimal group differences were found using a conventional inferior cerebellar grey matter reference region.

Conclusions: Our findings strongly suggest temporo-orbital white-matter is superior to inferior cerebellum as a reference region for PI-2620-PET imaging in 4R tauopathies, due to increased sensitivity and purported specificity for 4R tau.

Voxel-wise SUVR comparisons: disease vs controls
(FWE-corrected, $P < 0.001$)

● Temporo-orbital WM Reference ● Inferior cerebellar GM Reference

