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Kupffer cells control neonatal hepatic metabolism via

Igf1 signaling
Nikola Makdissi1,*, Daria J. Hirschmann1,*, Aleksej Frolov2,3,4, Inaam Sado1, Bastian Bennühr5,
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ABSTRACT

During perinatal development, liver metabolism is tightly regulated

to ensure energy supply for the newborn. Before birth, glycogen is

stored in hepatocytes and later metabolized to glucose, meeting

neonatal energy demands.Shortly after birth, lipogenesis begins, driven

by transcriptional activation of enzymes involved in fatty acid oxidation.

These processes are thought to be largely regulated by systemic insulin

and glucagon levels. However, the role of liver-derived local factors

in neonatal hepatocyte metabolism remains unexplored. Kupffer cells

(KCs), the liver’s resident macrophages, colonize the fetal liver early

in embryogenesis and support liver metabolism in adulthood. Yet

whether KCs influence neonatal hepatocyte metabolism is unknown.

Using conditional knockout mouse models targeting macrophages, we

demonstrate that yolk sac-derived KCs play a crucial role in hepatocyte

glycogen storage and function by regulating the tricarboxylic acid cycle,

a role monocyte-derived KC-like cells cannot substitute. Newborn

pups lacking yolk sac-derived KCs mobilize glycogen more rapidly, a

process in part regulated by insulin-like growth factor 1 (Igf1) production.

Our findings identify KCs as major source of Igf1, with local production

essential for balanced hepatocyte metabolism at birth.

KEY WORDS: Liver development, Macrophage, Kupffer cell,
Hepatocytes, Igf1

INTRODUCTION

The liver is a highly versatile organ that shifts from being the main

site of hematopoiesis during embryogenesis to one of the major

metabolically active organs in the body after birth (Nakagaki et al.,

2018). In neonates, the liver undergoes a metabolic adaptation to

support postnatal energy demands (Gong et al., 2020; Li et al.,

2023). Before birth, starting at embryonic day (E) 17, glycogen is

stored in fetal hepatocytes (Tye and Burton, 1980). These stores are

mobilized immediately after birth to supply glucose to maintain

blood glucose levels during the initial hours prior to milk intake.

Within just a few hours, this glycogenolysis phase shifts to active

fatty acid oxidation (FAO) and engagement of the tricarboxylic acid

(TCA) cycle, which, together with the supply of amino acids and

essential co-factors, fuel gluconeogenesis to maintain glucose

homeostasis as milk-derived dietary lipids become the primary

energy source. Concurrently, neonatal hepatocytes shift away from

glycolysis toward oxidative phosphorylation, maximizing ATP

production to meet the high metabolic requirements of the newborn

(Li et al., 2023). This metabolic switch ensures a steady glucose

supply, which is essential for neonatal tissue homeostasis.

Neonatal liver metabolism is controlled by a combination of

hormonal, genetic and environmental factors. The hormones insulin

and glucagon play central roles in inducing glycogen breakdown and

gluconeogenesis. After birth, glucagon levels rise sharply, stimulating

glycogenolysis and gluconeogenesis, while insulin levels remain

low until lactation begins. Lactation provides triglycerides (TGs),

which are broken down into fatty acids and become the primary

energy source for ATP production through FAO and the TCA

cycle. Simultaneously, hepatocytes undergo maturation marked by

the upregulation of key transcription factors and the expression of

metabolically essential genes, which together support increased

metabolic activity (Gong et al., 2020; Yang et al., 2023).

Before birth, the liver upregulates expression of the insulin

receptor (Insr) (Gong et al., 2020) to respond to increasing insulin

levels and the demand for FAO. In addition to insulin, insulin-like

growth factor 1 (Igf1) is a natural ligand of the Insr. Igf1 is an

important factor regulating growth and metabolism and is closely

linked to insulin signaling pathways (Kineman et al., 2018, 2025).

In the adult organism, hepatocytes are the primary source of

circulating Igf1 (Kineman et al., 2018, 2025). In contrast, single-cell

analyses of the fetal liver at E13.5 identified Kupffer cells (KCs), the

resident hepatic macrophages, as a major local source of Igf1 (Tang

et al., 2025). While mature hepatocytes do not express significant

levels of the Igf1 receptor (Igf1r), its expression is detectable during

the early stages of hepatocyte development (Waraky et al., 2016).
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This suggests that during development KC-derived Igf1 may

influence hepatocyte maturation or metabolic function through Insr/

Igf1 signaling pathways. Recent studies further support this

hypothesis by demonstrating that macrophage-derived Igf1 in the

brain and gut plays a crucial role in tissue development (Yan et al.,

2022; Rusin et al., 2024).

KCs originate from yolk sac-derived erythro-myeloid progenitors

(EMPs) (Gomez Perdiguero et al., 2015). These EMPs differentiate

into pre-macrophages (pMacs), which migrate to the liver and

establish the early KC population as early as E10.25 (Mass et al.,

2016), preceding the differentiation of hepatoblasts into hepatocytes.

We have recently shown that KCs play a vital role in supporting

fetal liver hematopoiesis, which peaks at E13.5-E14.5 (Kayvanjoo

et al., 2024), underscoring the importance of macrophages in organ

development and function (Mass et al., 2023). During adulthood,

KCs are also known to regulate liver metabolism through insulin-

like growth factor binding protein 7 (Igfbp7) (Morgantini et al.,

2019). However, their role in neonatal hepatocyte maturation and

metabolism remains unexplored.

In this study, we investigated the role of KCs and KC-derived

factors in the development and function of neonatal hepatocytes.

Using two KC depletion models and conditional Igf1 knockout

mice, we found that KCs are important for proper metabolic function

of neonatal hepatocytes. KC depletion accelerated hepatocyte

maturation and disrupted metabolic regulation at the transcriptional

level. This dysregulation was reflected functionally by reduced TCA

cycle activity and diminished insulin responsiveness, resulting in

reduced glycogen storage in hepatocytes. Notably, these functions

were not restored by KC-like cells that repopulated the empty KC

niche. Additionally, depletion of KC-derived Igf1 also led to a

decreased glycogen content. Together, these findings reveal that yolk

sac-derived KCs and their production of Igf1 are crucial for neonatal

hepatocyte development and function.

RESULTS

Characterization of Kupffer cell depletion models

To address the role of KCs in neonatal hepatocyte metabolism, we

employed two different mouse models that lead to the depletion of

tissue-resident macrophages: Tnfrsf11aCre; Spi1fl/fl and Tnfrsf11aCre;

Csf1rfl/fl (Fig. 1A, Fig. S1). Using the Tnfrsf11aCre, which targets

pMacs and therefore all macrophages during development (Mass

et al., 2016), we depleted either the transcription factor Spi1 or

the surface receptor Csf1r, which are required for macrophage

development and survival (Cox et al., 2021; Kayvanjoo et al., 2024;

Jacome-Galarza et al., 2019). While we could confirm a complete

depletion of F4/80highCD11bint KCs at E14.5 in Tnfrsf11aCre;

Spi1fl/fl livers (KOSpi1) compared to littermates (WTSpi1) (Kayvanjoo

et al., 2024) (Fig. 1B,C; see Fig. S1B for gating strategy), the

peak of depletion in Tnfrsf11aCre; Csf1rfl/fl embryos (KOCsf1r)

was detected at E12.5 (Fig. S1C,D). At birth [postnatal day (P) 0],

the livers of KOSpi1 and KOCsf1r animals were repopulated by

CD11bintF4/80high cells (Fig. 1D,E, Fig. S1E), with KOCsf1r pups

even showing significantly increased macrophage numbers

(Fig. S1E), a phenomenon that has been previously observed

after the depletion of tissue-resident macrophages via blockade of

Csf1r (Elmore et al., 2018).

To investigate whether the depleted KC niche would be

repopulated by EMP-derived cells or by an alternative source, such

as hematopoietic stem cell (HSC)-derived monocytes, we utilized a

genetic labeling approach. In this context, it is important to note that,

although KCs primarily arise from yolk sac-derived EMPs, HSC-

derived monocytes can also serve as a source for macrophages under

certain conditions, including injury or inflammation (Mass et al.,

2023; Schultze et al., 2019). To distinguish between HSC- and

EMP-origin, we crossed the KOSpi1 model to the Ms4a3FlpO;

Rosa26FLF-tdTomato model (Fig. 1F), which specifically labels cells

originating from the definitive HSC wave, more specifically from

granulocyte-monocyte progenitors (GMPs) that express Ms4a3

(Liu et al., 2019; Huang et al., 2025). This allowed us to trace the

contribution of GMP-derived monocytes in the repopulation process,

which constituted ∼80% of all Ly6C+ monocytes in the fetal liver at

P0 in both WTSpi1 and KOSpi1 mice (Fig. 1G). While the number of

tdTomato (tdT)+ (i.e. GMP-derived) CD11bintF4/80high cells increased

significantly from ∼1% to 5-7%, a large fraction remained tdT−

(Fig. 1G). This indicates that EMP-derived monocytes, EMP-derived

pMacs residing in the fetal liver (Gomez Perdiguero et al., 2015;

Stremmel et al., 2018; Mass et al., 2016), or other GMP-independent

progenitors can readily differentiate into KC-like cells if the KC niche

is empty. Of note, tdT+ monocyte labeling was slightly reduced in

KOSpi1; Ms4a3 livers (Fig. 1G), likely reflecting the recruitment of

these cells to other tissues lacking tissue-resident macrophages.

To characterize phenotypic differences between KCs and KC-

like cells, and to assess whether tdT+ and tdT− populations share

comparable phenotypic properties, we analyzed the Tnfrsf11aCre;

Spi1fl/fl model crossed to Ms4a3FlpO; Rosa26FLF-tdTomato (hereafter

referred to as WTSpi1; Ms4a3 and KOSpi1; Ms4a3) by flow

cytometry. In WTSpi1; Ms4a3 livers, tdT+ KCs expressed higher

levels of CD45 (Ptprc), CD11b (Itgam) and F4/80 (Adgre1) than

tdT− KCs, with CD11b and F4/80 showing a significant increase

while expression of Tim4 (Timd4), Clec2 (Clec1b), Clec4f, Cx3cr1

and CD64 (Fcgr1) remained unchanged (Fig. 1H). In contrast,

KC-like cells from KOSpi1; Ms4a3 livers displayed a distinct

expression profile. Compared toWTSpi1;Ms4a3 controls, tdT− KC-

like cells showed significantly elevated Tim4 and F4/80 expression,

accompanied by reduced CD11b, Clec2 and Clec4f levels. A similar

pattern was observed in tdT+ KC-like cells from KOSpi1; Ms4a3

livers, particularly for Tim4, CD11b and Clec4f (Fig. 1H). KOSpi1

mice analyzed without the fate-mapper background consistently

showed reduced CD11b and increased Tim4 expression (Fig. S1F).

Furthermore, in WTSpi1; Ms4a3 livers, KCs segregated into Vsig4+

and Vsig4− populations irrespective of origin, whereas in the

KOSpi1; Ms4a3 livers, the Vsig4+ subset was almost completely

absent (Fig. 1I). Together, these results indicate that ontogeny

influences KC marker expression (CD11b, F4/80) in wild-type

livers, whereas in KOSpi1; Ms4a3 animals the absence of yolk sac-

derived KCs and their subsequent replacement by fetal liver

progenitors introduces an additional layer shaping KC identity.

Building on the phenotypic differences observed between KCs

and KC-like cells, we next examined whether these distinctions

extended to the transcriptional level. Transcriptome analysis of

sorted F4/80highCD11bint KCs and KC-like cells from P0 KOSpi1

and WTSpi1 livers, respectively, showed that the freshly

differentiated KC-like cells had an altered transcriptional profile

(Fig. 2A), resulting in 1282 downregulated and 1463 upregulated

differentially expressed genes (DEGs) (Fig. 2B, Table S1). Of note,

the number of tdT+ KCs in WTSpi1; Ms4a3 livers was very low,

suggesting that the transcriptomic signature of bona fide yolk sac-

derived KCs dominates in these samples. Therefore, we did not

distinguish between tdT+ and tdT− subsets for subsequent analyses.

Gene set enrichment analysis (GSEA) indicated that genes falling

into terms such as ‘protein secretion’, ‘angiogenesis’ and ‘oxidative

phosphorylation’ were enriched in KOSpi1 KC-like cells, while

genes belonging to ‘inflammatory response’, ‘heme metabolism’,

‘interferon alpha response’ and ‘interferon gamma response’ were
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downregulated (Fig. 2C, Table S2). Upregulated DEGs falling into

the term ‘oxidative phosphorylation’ included Slc25a3, Ndufs2 and

Idh1, whereas KOSpi1 KC-like cells downregulated genes such as

Tnf, Il6, Il1a, Il1b and Cxcl10 falling into the term ‘inflammatory

response’ (Fig. 2D). These findings, along with the altered surface

expression of macrophage markers, demonstrate that the newly

formed KC-like cells possess a distinct molecular composition

compared to bona fide yolk sac-derived KCs. In summary, the

Fig. 1. See next page for legend.

3

RESEARCH ARTICLE Development (2026) 139, dev204962. doi:10.1242/dev.204962

D
E
V
E
L
O
P
M

E
N
T



KOSpi1 and KOCsf1r models represent two complementary KC-

depletion models that allow the role of macrophage ontogeny in

tissue development and homeostasis to be studied.

KC depletion leads to decreased glycogen storage at birth

After establishing the KC-depletion models, we investigated whether

the replacement of yolk sac-derived, long-lived KCs by KC-like cells

could affect neonatal hepatic metabolism. The liver plays an essential

role in energy conversion, maintaining blood glucose homeostasis

in neonates by storing glycogen during embryogenesis, which is

subsequently metabolized through extensive glycogenolysis after

birth (Li et al., 2023). Therefore, we assessed glycogen levels in P0

WTSpi1 and KOSpi1 livers using Periodic acid-Schiff (PAS) staining

(Fig. 3A). Quantification of the staining indicated that KOSpi1 livers

stored less glycogen than their littermate controls (Fig. 3B,C). For a

more quantitative analysis, we used a colorimetric assay, which

corroborated our histological results, showing that KOSpi1 livers

had approximately half the glycogen concentration of WTSpi1 livers

(Fig. 3D). Moreover, transmission electron microscopy images

clearly demonstrated a reduction in glycogen content in KOSpi1

compared toWTSpi1, where the glycogen appears more abundant and

densely packed (Fig. 3E). We further confirmed a significantly

reduced glycogen content in the KOCsf1r livers compared to WTCsf1r

using a colorimetric assay (Fig. S1G). Collectively, our findings

suggest that the replacement of depleted KCs by KC-like cells leads

to altered hepatocyte metabolism at birth, characterized by significant

changes in glycogen storage.

Hepatocytes undergo a metabolic shift after Kupffer cell

depletion

To understand whether hepatocytes are altered functionally due

to the lack of KCs, we first performed single-cell RNA-sequencing

(scRNA-seq) analysis of livers from P0 WTSpi1 and KOSpi1

(Fig. S2A,B). We identified hepatocytes based on lineage markers

(Fig. S2B). After identifying all DEGs betweenWTSpi1 and KOSpi1,

we ranked these genes based on average log2 fold-change and used

the top 100 up- or downregulated genes for gene ontology (GO)

enrichment analysis (Table S3). The results of this analysis showed

a significant upregulation of ‘lipid transport’, ‘ATP metabolic

process’, ‘pyruvate metabolic process’ and ‘response to insulin’,

and downregulation of ‘fatty acid metabolic process’ and

‘gluconeogenesis’ terms in KOSpi1 hepatocytes (Fig. 4A).

Given the dysregulation of metabolic pathways at the transcriptional

level and the accelerated glycogen degradation, we aimed to determine

whether the absence of KCs affects hepatocyte maturation in KOSpi1

animals. To this end,we subclustered all hepatocytes, which resulted in

three distinct clusters (Fig. 4B). We examined the developmental

trajectory of hepatocytes using trajectory inference with Monocle3. To

rank cells on a pseudotemporal scale, we performed pseudotime

analysis with a cell from cluster 0 as root node, because cells in this

cluster expressed the lowest levels of hepatocyte maturation markers,

such as Alb, Aldob, Ahsg and Ttr (Gong et al., 2020). Thus, in this

analysis, cluster 0 represents the immature state, and progresses to

cluster 2, which represents the most mature state (Fig. 4C). As the

distribution of cells among cluster 2 was altered in KOSpi1 hepatocytes

(Fig. 4B), we ranked genes expressed by cluster 2 from WTSpi1 and

KOSpi1 hepatocytes based on average log2 fold-change and used the

top 100 up- or downregulated genes for GO enrichment analysis.

This analysis revealed that distinct genes falling into the same terms

were either upregulated inWTSpi1 or in KOSpi1 hepatocytes (Fig. S2C).

Common terms included ‘fatty acid metabolic process’ and

‘gluconeogenesis’ with genes such as Lpin1 and Lpin2, which are

important for TG biosynthesis, showing a reduced expression in

KOSpi1 hepatocytes, while other genes related to fatty acid metabolic

processes, such as Apoa1 and Lpl, were expressed at higher levels in

KOSpi1 hepatocytes (Fig. S2C). These data suggest that KOSpi1

hepatocytes, despite belonging to the most mature cluster, shifted their

metabolic functionality compared to WTSpi1 hepatocytes. To further

address this transcriptional shift, we performed a density distribution

(Fig. 4D) and an empirical cumulative distribution analysis (Fig. 4E),

focusing on the pseudotime interval 12-15. These analyses revealed

that KOSpi1 hepatocytes progressed more rapidly toward the mature

state. We corroborated this by performing a pseudo-bulk analysis of

DEGs in cluster 2: the upregulation of hepatocyte maturation markers,

such as Alb, Aldob, Ahsg and Ttr (Gong et al., 2020), in KOSpi1

hepatocytes compared to WTSpi1 (Fig. 4F) further supported the

hypothesis that KC deficiency during embryogenesis promotes

hepatocyte maturation on the transcriptional level.

To determine whether KOSpi1 hepatocytes exhibit increased

metabolic activity due to their accelerated transcriptional maturation,

we performed 5-h [U-¹³C6]-glucose tracing experiments on freshly

isolated livers from WTSpi1 and KOSpi1 mice. Normalized metabolite

abundance showed significantly higher levels of pyruvate and lactate

in KOSpi1 livers, while alanine, aspartate, citrate and malate remained

comparable between conditions (Fig. 4G). [U-¹³C6]-labeled

metabolites also showed increased isotope incorporation into

pyruvate and lactate (Fig. 4H,I); however, glycolytic acetyl-CoA

incorporation into citrate (M2) was significantly lower in KOSpi1

livers, while contribution to malate was similar across genotypes

(Fig. 4H,I). Collectively, these findings suggest increased glycolytic

flux, reduced pyruvate dehydrogenase (PDH) activity, and altered

carbon flow into the TCA cycle in KOSpi1 livers. Moreover,

hepatocytes showed decreased reactive oxygen species production,

as measured by MitoSOX staining (Fig. 4J). The MitoSOX signal

serves as a proxy for mitochondrial respiration measurement and,

therefore, indicates reduced TCA cycle activity, possibly due to the

decreased PDH flux. Of note, measurement of MitoTracker green

fluorescence (Fig. 4K), indicative of mitochondrial quantity, and

quantification of the cristae area coverage in mitochondria using

transmission electronmicroscopy (Fig. 4L) did not reveal any changes

between WTSpi1 and KOSpi1 livers. Additionally, high-dimensional

Fig. 1. Characterization of the KOSpi1 mouse model. (A) Breeding scheme

to produce KOSpi1 and littermate controls (WTSpi1). Created in BioRender by

Mass, E., 2025. https://BioRender.com/jvsfc8p. This figure was sublicensed

under CC-BY 4.0 terms. (B) Representative flow cytometry plots of WTSpi1 and

KOSpi1 fetal livers at E14.5 showing efficient depletion of KCs. (C) Quantification

of total WTSpi1 and KOSpi1 KC numbers at E14.5. Circles represent individual

mice. n=4-9 per genotype from 3 independent litters. Unpaired Student’s

t-test. (D) Representative flow cytometry plots of WTSpi1 and KOSpi1 livers at

P0 showing repopulation of the empty KC niche. (E) Quantification of total

WTSpi1 and KOSpi1 KC numbers at P0. Circles represent individual mice.

n=9-13 per genotype from 5 independent litters. (F) Breeding scheme to

produce KOSpi1 mice and littermate controls in combination with the

granulocyte-monocyte progenitor (GMP) fate-mapping model Ms4a3FlpO.

Labeled GMPs differentiate into monocytes and subsequently into

macrophages (MΦ). (G) Quantification of fate-mapped Ly6C+ monocytes,

KCs and KC-like cells in WTSpi1 and KOSpi1 mice at P0. Circles represent

individual mice. n=4 per genotype from 2 independent litters. Unpaired

Student’s t-test. (H) Normalized expression of surface receptor markers on

fate-mapped KCs and KC-like cells from WTSpi1; Ms4a3 and KOSpi1; Ms4a3

mice at P0. n=3-6 per genotype from 2 independent litters. Mixed-effects

model (REML) test with Šidák’s correction for multiple comparison test.

(I) Quantification of Vsig4+ macrophages inWTSpi1; Ms4a3 and KOSpi1; Ms4a3

mouse livers at P0. n=3-6 per genotype from 2 independent litters. Mixed-

effects model (REML) test with Šidák’s correction for multiple comparison test.

Data are shown as mean±s.d. MFI, median fluorescence intensity.
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flow cytometry of hepatocytes did not detect significant changes in the

abundance of various nutrient transporters [GLUT1 (SLC2A1),

CD36, CD98 (SLC3A2)] and core metabolic enzymes [PKM, G6PD,

SDHA, ATP5a, CPT1a, ACC1 (ACACA)] (Fig. S2D-F). These data

confirm that the altered metabolic activity arises from changes in the

metabolic response of hepatocytes rather than from impairments in

mitochondrial health. In summary, our findings from metabolic

tracing experiments indicate that KOSpi1 hepatocytes have enhanced

glycolytic activity and increased production of pyruvate and lactate,

yet exhibit reduced TCA cycle engagement as evidenced by lower

citrate incorporation.

To further explore whether the changes in PDH flux and

TCA cycle activity impact lipid metabolism, we performed a

comprehensive lipid analysis using mass spectrometry. Overall, no

significant changes were found in lipid classes across both KO

models (Fig. S3A,B). However, we observed a reduction in the most

abundant TG species, including TG(50:2), TG(52:2) and TG(52:3),

in both KOSpi1 and KOCsf1r livers (Fig. 4M, Fig. S3C), indicating

reduced synthesis of these specific lipid types. Collectively, our data

demonstrate the requirement of KCs for proper neonatal hepatocyte

function, as the presence of KC-like macrophages leads to a

metabolic dysregulation, with a preference for lactate production

over TCA cycle and lipid synthesis. This shift may also explain the

need for increased consumption of glycogen to maintain ATP

levels, leading to faster glycogen depletion (see Fig. 3).

KC-derived Igf1 controls glycogen homeostasis in neonatal

hepatocytes

To identify KC-dependent pathways potentially driving the

metabolic shift and increased glycogen demand in hepatocytes,

we used the scRNA-seq data from WTSpi1 and KOSpi1 livers and

performed CellChat analysis, focusing on the interaction between

KCs and hepatocytes (Fig. 5A). The analysis revealed several

downregulated pathways in KC-like macrophages from KOSpi1

animals, particularly those involved in regulating cellular

metabolism, including the visfatin, IGF and SEMA6 pathways

(Kang et al., 2018; Nakanishi et al., 2024; Revollo et al., 2007;

Kineman et al., 2018, 2025; Fellinger et al., 2023). Notably, visfatin

(also known as the extracellular form of Nampt) has been shown to

regulate insulin secretion (Revollo et al., 2007). To investigate

whether KC-like macrophages fromKOSpi1 livers interact uniformly

with all hepatocyte populations or if specific hepatocyte clusters are

more affected, we analyzed ligand–receptor pairs to explore these

dynamics (Fig. 5B). Our analysis revealed that Nampt-Insr

interactions had the highest probability of interaction between

WTSpi1 KCs and all three hepatocyte clusters, but were markedly

reduced or absent in KOSpi1 livers (Fig. 5B). Igf1-Igf1r signaling

was highest betweenWTSpi1 KCs and hepatocyte cluster 2 (Hepa2),

but showed reduced communication probability between KCs

and Hepa2 in KOSpi1 livers. Similar behavior was observed for the

ligand–receptor pair Sema6a-Plxna2 (Fig. 5B). Although not listed

Fig. 2. Transcriptional alterations in KC-like cells from KOSpi1 neonates. (A) Principal component analysis of the WTSpi1 and KOSpi1 KC and KC-like

macrophages, respectively. n=5 per genotype from 3 independent litters. (B) Volcano plot showing DEGs comparing KCs from WTSpi1 and KC-like cells from

KOSpi1 mice at P0. Differential expression was tested using DESeq2 on raw counts, log2FoldChange=1.3, P-adjust=0.05. (C) GO enrichment analysis of

differentially up- and downregulated genes comparing KCs from WTSpi1 and KOSpi1 mice at P0. (D) Selected genes from the terms ‘oxidative

phosphorylation’ and ‘inflammatory response’ from C. Dot plot indicates upregulated (red) and downregulated (purple) genes when comparing KOSpi1 to

WTSpi1. Differential expression was tested using DESeq2 on raw counts. Asterisks indicate adjusted P-value<0.05.
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among the main signaling pathways altered between WTSpi1 and

KOSpi1 animals (Fig. 5A), we predicted a potential interaction of Tnf

and Tnfrsf1a in WTSpi1 livers based on Tnf gene expression in KCs

and Tnfrsf1a gene expression in all hepatocyte clusters (Fig. 5B).

This interaction was absent in KOSpi1 livers (Fig. 5B). This further

supports the hypothesis that neonatal yolk sac-derived KCs play

a role in regulating hepatocyte metabolism, as KC-derived Tnf is

known to control lipid uptake in hepatocytes (Diehl et al., 2020).

Next, we analyzed the pathways directly associated with Insr and

Igf1r in more detail. Network centrality analysis in WTSpi1 KCs and

KOSpi1 KC-like cells and hepatocyte clusters suggested that WTSpi1

KCs were the primary senders, mediators and influencers of the IGF

signaling pathway. In contrast,KOSpi1KC-like cells exhibited reduced

sender activity, with the least mature hepatocyte cluster 0 (Hepa0)

emerging as a prominent sender (Fig. 5C). Further analysis of the

visfatin (Nampt) signaling pathway revealed that the most mature

cluster Hepa2 in KOSpi1 livers showed a diminished role in receiving

signals via Insr. Additionally, Hepa2 in KOSpi1 livers showed

diminished activity as mediator and influencer to its counterpart in

WTSpi1 animals (Fig. 5C). Although Nampt does not directly bind

Insr, Igf1 is known to interact with Insr homodimers and Insr/Igf1r

heterodimers. Both ligands activate downstream Insr signaling

pathways, thereby regulating cellular metabolism (Saddi-Rosa et al.,

2010; Kineman et al., 2018). To further investigate differential

regulation of this pathway, we analyzed bulk RNA-seq data from P0

WTSpi1 KCs and KOSpi1 KC-like cells, as well as sorted hepatocytes

from the same animals. This analysis revealed that Igf1 gene

expression was lower in KOSpi1 KC-like cells compared to WTSpi1

KCs, although this difference did not reach statistical significance, and

was present at relatively low levels in hepatocytes (Fig. 5D). These

findings support the notion that Igf1-dependent signaling is altered in

KOSpi1 animals, likely reflecting paracrine regulatory mechanisms.

Although these transcriptional data suggest altered expression

of Igf1 and Insr pathway components, they do not fully reflect

the dynamic regulation of signaling activity, which depends not

only on gene expression but also on ligand availability and receptor

phosphorylation status. In the neonatal liver, hepatocytes sense

insulin via Insr to promote glucose uptake, whereas glucagon

stimulates glycogen breakdown and glucose release (Li et al., 2023;

Nevado et al., 2006). To determine whether altered systemic

hormone levels contribute to the metabolic shift observed in

KOSpi1 hepatocytes, we measured plasma insulin and glucagon

concentrations at P0. However, neither insulin nor glucagon levels

differed between KOSpi1 andWTSpi1 animals (Fig. 5E,F), indicating

that systemic hormonal changes are unlikely to account for the

observed metabolic phenotype.

Next, we employed a quantitative phospho-proteomics approach

and compared whole livers of WTSpi1 and KOSpi1 littermates at

P0. To complement our findings from the scRNA-seq data, we

specifically focused on glucose- and insulin-related signaling

pathways. Enrichment analysis of downregulated phosphorylation

sites comparing KOSpi1 and WTSpi1 livers (Table S4) showed that

sites involved in ‘glucose metabolic process’, ‘Igf1 binding’, ‘Igf1

signaling pathway’ and ‘insulin binding’ were less phosphorylated.

Conversely, sites involved in ‘cellular response to glucose stimulus’

showed an increased phosphorylation in KOSpi1 livers compared to

WTSpi1 (Fig. 5G). Notably, downregulated phosphorylation sites in

KOSpi1 livers included key sites on insulin receptor substrate 1 (Irs1)

– S307, S318 and S526 (Table S4) – defined as direct downstream

activation sites of the Insr (Humphrey et al., 2013; Müssig et al.,

2005; Rui et al., 2001; Parker et al., 2015). Additionally, the

downregulated GO term ‘insulin receptor complex’ included the site

S1340 on Insr, which is phosphorylated upon insulin stimulation

(Parker et al., 2015). In summary, our findings suggest that KC-like

macrophages in KOSpi1 livers are unable to activate the signaling

pathway downstream of Igf1 and Insr in neonatal hepatocytes

as efficiently as bona fide KCs, potentially contributing to the

observed depletion of hepatic glycogen stores.

Previous studies have shown that macrophages, especially

during the early postnatal period, are major producers of Igf1

Fig. 3. KOSpi1 hepatocytes contain less glycogen storage at birth. (A) Representative PAS (purple)-Hematoxylin (H, blue) staining of WTSpi1 and KOSpi1

livers at P0. Scale bars: 200 µm. (B) Scheme indicating how PAS staining intensity was quantified using Fiji. (C) Normalized PAS signal intensity of WTSpi1

and KOSpi1 livers at P0. Circles represent individual mice. n=3-4 per genotype from 2 independent litters. Paired Student’s t-test. Data are shown as

mean±s.d. (D) Glycogen levels measured on whole liver lysates of WTSpi1 and KOSpi1 P0 livers. n=5 per genotype from 3 independent litters. Values were

normalized per litter. The whiskers represent the 5-95% percentile, the box extends from the 25th to 75th percentiles and the horizontal line represents the

median. Cross indicates the mean. Mann–Whitney test. (E) Representative transmission electron micrograph from WTSpi1 and KOSpi1 livers at P0. n=3 per

genotype from 2 independent litters. GP, glycogen particle; N, nucleus. Scale bars: 5 µm.
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Fig. 4. See next page for legend.
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(Pridans et al., 2018; Yan et al., 2022). Furthermore, analysis of the

developmental atlas dataset from Qiu et al. (2024) revealed that,

among liver-resident cells, KCs exhibit the highest Igf1 expression,

identifying them as the predominant producers during development

(Fig. 6A). To address whether KC-derived Igf1 directly controls

glycogenolysis, we generated the macrophage-specific Igf1 knockout

mouse model Tnfrsf11aCre; Igf1fl/fl (Fig. 6B). Conditional knockout

mice (KOIgf1) exhibited significantly reduced Igf1 levels, with liver

Igf1 levels averaging around two-thirds and serum Igf1 levels around

half of those observed in littermate controls (WTIgf1; Fig. 6C,D). This

reduction was accompanied by lower glycogen levels in the liver at

P0, demonstrated by quantitative colorimetric assay (Fig. 6E) and

further confirmed by transmission electron microscopy (Fig. 6F-H).

To further assess how KC-derived Igf1 influences hepatic glucose

utilization, we performed stable-isotope tracing in neonatal livers

fromWTIgf1 andKOIgf1mice incubated ex vivowith [U-¹³C6]-glucose

for 5 h. In contrast to the increased glycolytic flux and reduced PDH

activity observed in KOSpi1 livers, loss of macrophage-derived Igf1

alone did not perturb central carbon metabolism. Isotopomer

distribution and total metabolite abundances remained comparable

betweenWTIgf1 and KOIgf1 livers, indicating that glycolytic and PDH

fluxes were largely preserved (Fig. 6I,J).

We next tested whether exogenous Igf1 could modulate these

pathways. Supplementation of recombinant Igf1 had no effect on

WTIgf1 livers but decreased glycolytic flux and enhanced PDH

activity in KOIgf1 livers, reflected by reduced M3-pyruvate and

increased M2-malate with similar trends in M2-citrate labeling

(Fig. 6J). Together, these data indicate that Igf1 signaling in wild-

type neonatal livers operates near maximal capacity, rendering

further stimulation ineffective, whereas livers lacking KC-derived

Igf1 remain responsive to Igf1. Thus, acute restoration of Igf1

signaling in this context reorients hepatocyte metabolism toward

oxidative pathways, the inverse of the glycolytic shift induced by

KC depletion, demonstrating that loss and gain of Igf1 signaling

exert opposing effects on neonatal hepatic metabolism.

In summary, these findings demonstrate that KC-derived Igf1 is

an important regulator of neonatal hepatic glycogen and glucose

metabolism. Its developmental loss disrupts glycogen storage

and shifts hepatocytes toward glycolysis, whereas its acute

re-introduction promotes oxidative metabolism through enhanced

PDH activity, underscoring the central role of KC–hepatocyte cross-

talk in establishing metabolic homeostasis after birth.

DISCUSSION

Here, we show that metabolic function of neonatal hepatocytes

depends on the early presence and co-development of yolk sac-

derived KCs. Depletion of KCs during embryogenesis using two

different models (KOSpi1 and KOCsf1r) led to a replenishment of the

empty niche by KC-like macrophages. However, this replacement

was not sufficient to support normal hepatocyte function, as

evidenced by reduced hepatic glycogen storage in both models.

These findings indicate that the timely co-development of EMP/

pMac-derived KCs from the onset of liver organogenesis is essential

and cannot be functionally compensated for by perinatally recruited

KC-like cells.

This dependency reflects the unique characteristics of the

neonatal liver environment. At birth, neither hepatocyte zonation

nor the mature KC niche, characterized by extensive interaction with

liver sinusoidal endothelial cells and hepatic stellate cells, is yet

established (Bonnardel et al., 2019; Araujo David et al., 2024).

Consequently, the macrophage–hepatocyte crosstalk during this

developmental window differs fundamentally from the interactions

observed in adult tissues. Early KC-derived signals appear to be

indispensable to guide hepatocyte maturation before the tissue

architecture and growth factor production by other liver-resident

cells are fully established.

Using Ms4a3 promoter-based fate-mapping in combination

with the KOSpi1 model, we confirmed an increased influx of

GMP-derived monocytes into the KC niche. However, most KC-

like macrophages did not originate from definitive HSCs. Recent

studies suggest long-term (LT)-HSC-independent hematopoiesis in

the fetal liver (Kobayashi et al., 2023; Yokomizo et al., 2022),

which may partially account for the unlabeled cells in our model, as

Ms4a3 only labels GMPs stemming from definitive LT-HSCs (Liu

et al., 2019). Alternatively, EMP-derived monocytes, which are

readily found in the fetal liver (Gomez Perdiguero et al., 2015),

and which remain Ms4a3 negative, may be the source of new

macrophages in the liver. Thus, our combined KO/fate-mapping

approach highlights the so-far elusive in vivo potential of HSC-

independent progenitors generating macrophages and the need to

develop novel mouse models that can discriminate EMP- from

HSC-derived monocytes.

KCs are among the first tissue-specific macrophages that can be

detected in the developing embryo, as early as E10.25 (Mass et al.,

2016). Thus, hepatocytes, which begin differentiating at E13.5

(Yang et al., 2017) and start glycogen storage at E17 (Tye and

Burton, 1980), are continuously interacting with KCs, which only

begin to migrate to the sinusoids at 1 week of age (Araujo David

et al., 2024). This direct cell communication positions KCs

as important influencers of hepatocyte maturation and function.

Using a combination of scRNA-seq, phospho-proteomics and a

conditional knockout of Igf1 in macrophages (KOIgf1), we identify

KCs as active regulators of hepatocyte function. Neonatal KCs

produce Igf1, which supports TCA activity and glucose metabolism

in hepatocytes before hepatocytes themselves begin producing Igf1.

Developmental reference datasets provide independent support for

this conclusion. Analyses of single-cell atlases of the fetal and neonatal

Fig. 4. KOSpi1 hepatocytes exhibit an altered metabolism at birth
following Kupffer cell depletion. (A) Pseudo-bulk RNA-seq analysis of

hepatocytes showing GO enrichment for up- and downregulated pathways in

KOSpi1 at P0. (B) UMAP analysis of P0 WTSpi1 and KOSpi1 hepatocytes from

the scRNA-seq dataset. (C) Pseudotime trajectory analysis of the hepatocytes

cluster using Monocle3. (D) Density distribution analysis of hepatocytes within

the pseudotime interval 12-15. (E) Empirical cumulative distribution function

(ecdf) analysis of hepatocytes within the pseudotime interval 12-15.

(F) Pseudo-bulk analysis of DEGs in hepatocyte cluster 2. Dot plot shows log2
fold-change (color) and percentage of cells expressing each gene (dot size).

(G) Normalized total metabolite abundance in of WTSpi1 and KOSpi1 livers

following [U-13C6]-glucose tracing at P0. n=4 per genotype from 2

independent litters. Unpaired Student’s t-test. **P<0.01, ***P<0.001. ns, not

significant (P>0.05). (H) Schematic of the possible metabolite labeling

patterns due to the incorporation of the [U-13C6]-glucose tracer. Created in

BioRender by Hiller, K., 2025. https://BioRender.com/qo2etjn. This figure was

sublicensed under CC-BY 4.0 terms. (I) Fractional enrichment of labeled

metabolites following [U-13C6]-glucose tracing at P0. n=4 per genotype from 2

independent litters. Unpaired Student’s t-test. (J,K) Normalized median

fluorescence intensity (MFI) of MitoSOX Red (J) and MitoTracker Green (K) in

hepatocytes at P0. n=13-14 per genotype from 5 independent litters. The

whiskers represent the 5-95% percentile, the box extends from the 25th to 75th

percentiles and the horizontal line represents the median. Cross indicates the

mean. Unpaired Student’s t-test. (L) Representative transmission electron

micrographs of mitochondria of WTSpi1 and KOSpi1 livers (left), along with the

quantified cristae area coverage (right). n=17-18 mitochondria per genotype

from 2 independent litters. Scale bars: 500 nm. (M) The abundance of total

triacylglycerol (TG) and its subspecies in WTSpi1 and KOSpi1 livers. n=5-6 per

genotype from 3 independent litters. Unpaired Student’s t-test. All bar plots are

presented as mean±s.d.
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liver (Tang et al., 2025; Qiu et al., 2024) consistently show that KCs

express the highest levels of Igf1 among hepatic cell populations,

establishing them as the predominant source of Igf1 during liver

development. Together with our experimental models, these data

identify KCs as a principal origin of Igf1 in the perinatal liver and

reinforce their role as key regulators of early hepatic metabolism.

Our isotope-tracing experiments refine our understanding of this

regulatory axis. Loss of KC-derived Igf1 did not alter baseline

glycolytic or PDH fluxes, indicating that hepatocytes compensate for

the absence of KC-derived Igf1 through alternative mechanisms.

Despite this compensation, these livers responded to exogenous

Igf1, which redirected glucose flux from glycolysis toward the

TCA. This response was the opposite of the glycolytic shift seen

after KC depletion and demonstrates that loss and restoration of

Igf1 signaling exert reciprocal effects on hepatocyte metabolism.

These findings suggest that KC-derived Igf1 fine-tunes the balance

between glycolytic and oxidative metabolism rather than driving total

carbon flux. They also reveal that developmental timing is crucial,

since hepatocytes that develop without KCs undergo persistent

metabolic reprogramming that cannot be fully corrected by later Igf1

exposure from KC-like cells. Nevertheless, we acknowledge that

additional paracrine factors produced by KCs, such as Tnf (Diehl

et al., 2020), as well as factors derived from other liver-resident cells,

cooperate with Igf1 to orchestrate hepatocyte maturation and energy

metabolism. This possibility is supported by the milder phenotype

observed in the KOIgf1 model compared to the KOSpi1 and KOCsf1r

models and represents an important direction for future studies.

It remains to be determined whether Igf1 exerts its effects

on perinatal hepatocyte metabolism via monomeric Igf1r, Insr

homodimers, or their heterodimers. The role of macrophage-derived

Igf1 in tissue development and function, also observed in the brain

and gut (Yan et al., 2022; Rusin et al., 2024), underscores the

specialized supportive functions of yolk sac-derived macrophages

in their surrounding niche, particularly before growth factor

production by other tissue cells commences.

Notably, this study shows that KC-like cells derived from

sources other than the yolk sac or yolk sac-derived cells that

establish a KC-like identity after E14.5 fail to fully support

hepatocyte metabolism. We have previously proposed the concept

of developmental programming of macrophages, suggesting that

Fig. 5. KC-hepatocyte crosstalk is altered in P0 KOSpi1 livers. (A) Bar plot showing the relative information flow of between WTSpi1 and KOSpi1 of inferred

cell–cell communication using CellChat. (B) Comparison of the significant ligand–receptor pairs between WTSpi1 and KOSpi1, which contribute to the signaling

from KCs to the hepatocyte clusters. (C) Heatmap showing the relative importance of KC and hepatocyte clusters as sender, receiver, mediator and influencer,

based on the computed four network centrality measures of IGF (top) and visfatin (bottom) signaling. (D) Box plot of variance stabilizing transformation-

normalized Igf1 expression in hepatocytes and macrophages in WTSpi1and KOSpi1 mice at P0. n=5 per genotype from 3 independent litters. Differential

expression was tested using DESeq2 on raw counts. The whiskers represent the 5-95% percentile, the box extends from the 25th to 75th percentiles and the

horizontal line represents the median. (E) Serum insulin levels measured by ELISA on WTSpi1 and KOSpi1 at P0. n=4-5 per genotype from 4 independent litters.

Bar plot presented as mean±s.d. Unpaired Student’s t-test. (F) Serum glucagon levels measured by ELISA on WTSpi1 and KOSpi1 at P0. n=6 per genotype from

3 independent litters. Bar plot presented as mean±s.d. Unpaired Student’s t-test. (G) Enrichment analysis of downregulated phosphorylation sites showing the

decreased and increased phosphorylation in KOSpi1 liver compared to WTSpi1. n=4-6 per genotype from 5 independent litters.
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Fig. 6. KC-derived Igf1 regulates glycogen homeostasis in hepatocytes at birth. (A) Percentage of (left) and normalized (right) Igf1 expression in the

respective hepatic cell type during embryogenesis. (B) Breeding scheme to produce KOIgf1 mice and littermate controls (WTIgf1). Created in BioRender by

Mass, E., 2025. https://BioRender.com/jvsfc8p. This figure was sublicensed under CC-BY 4.0 terms. (C,D) Igf1 levels measured by ELISA on whole liver

lysate (C) and serum (D) of WTIgf1 and KOIgf1 at P0. n=7-8 per genotype from 4 independent litters. Bar plots presented as mean±s.d. Unpaired Student’s

t-test. (E) Glycogen levels measured on whole liver lysates of WTIgf1 and KOIgf1 at P0. n=11-16 per genotype from 7 independent litters. Values were

normalized per litter. The whiskers represent the 5-95% percentile, the box extends from the 25th to 75th percentiles and the horizontal line represents the

median. Cross indicates the mean. Mann–Whitney test. (F) Representative transmission electron micrograph from WTIgf1and KOIgf1 livers at P0. n=3-4 per

genotype from 2 independent litters. GP, glycogen particle; N, nucleus. Scale bars: 8 µm. (G) Scheme indicating the quantification process of glycogen content

in hepatocytes. (H) Hepatocyte glycogen content of KOIgf1 normalized to WTIgf1 littermates; each value represents one hepatocyte (ten hepatocytes were

assessed per liver). n=3-4 per genotype from 2 independent litters. Mann–Whitney test. (I) Normalized total metabolite abundance in WTIgf1 and KOIgf1 livers

following [U-13C6]-glucose tracing at P0. n=5-6 per genotype from 2 independent litters. Unpaired Student’s t-test. ns, not significant (P>0.05). (J) Fractional

enrichment of labeled metabolites following [U-13C6]-glucose tracing at P0 with and without the addition of exogenous Igf1 protein. Liver samples with and

without Igf1 from the same animal are connected with a line. n=5-6 per genotype from 2 independent litters. Wilcoxon test.
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their co-development with niche cells, ontogeny and longevity are

crucial factors controlling their effector functions and, consequently,

organ development and function (Mass and Gentek, 2021; Mass

et al., 2023; Viola et al., 2024). Our findings reinforce that proper

neonatal hepatocyte metabolism requires continuous interaction with

yolk sac-derived KCs from the onset of liver organogenesis, a critical

developmental window during which macrophage-derived cues

shape hepatocyte maturation and long-term liver function.

MATERIALS AND METHODS

Mice

All investigations involving mice have been locally approved, and

performed procedures have followed the guidelines from Directive

2010/63/EU of the European Parliament on protecting animals used

for scientific purposes. The experiments were carried out following the

German law of animal protection and met the criteria defined by the

local institutional animal care committee [Landesamt für Natur, Umwelt

und Verbraucherschutz (LANUV), North Rhine-Westphalia, Az 81-

02.04.2018.A056 & Az 81-02.04.2023.A144]. The mice were housed

under specific pathogen-free conditions, a 12-h light/dark cycle, with

food and water available ad libitum. Timed matings were performed

overnight. Females were plug checked the next morning, and pregnant

females were monitored regularly. All mice were maintained on a

C57BL/6JRcc background. To generate mice lacking macrophages

during embryonic development Tnfrsf11aCre; Spi1fl/fl mice Tnfrsf11aCre;

Spi1fl/+ males were crossed with Spi1fl/f females (a similar scheme was

employed for Tnfrsf11aCre; Csf1rfl/fl mice). For fate-mapping incoming

myeloid cells Tnfrsf11aCre; Spi1fl/fl mice were crossed to Ms4a3FlpO;

Rosa26FLF-tdTomato/FLF-tdTomato mice (Rosa26FLF-tdTomato mice were originally

obtained from The Jackson Laboratory, stock #032864). For prenatal time

points, pregnant females were euthanized by cervical dislocation and the

embryos were decapitated directly after cesarean section. All postnatal mice

were separated from their mothers and decapitated before organ collection.

All mice were genotyped referring to protocols and primers provided by

The Jackson Laboratory or donating researchers. The sex of embryos and pups

was not determined.

Preparation of single-cell suspension for flow cytometry

Pre- and postnatal mice were euthanized as described, and the liver was

removed and weighed. For E12.5 and E14.5, the whole liver was processed,

and for P0 half was used for further steps. The tissue was cut into small

pieces (or dissociated with a pipette for E12.5-E14.5), and incubated with

500 µl of a digestion mix (80 U/ml DNase I; Sigma-Aldrich, DN25) and

1 mg/ml collagenase D (Roche, 11088858001) in FACS buffer (0.5%

bovine serum albumin, 2 mmol EDTA in PBS) for 30 min at 37°C. All

following steps were performed on ice. The suspension was further passed

through a 70 µm filter, and 5 ml cold FACS buffer was added. The samples

were centrifuged at 400 g for 5 min at 4°C and the supernatant was

discarded. Red blood cell lysis was performed only for the P0 samples by

dissolving the cells gently in 1 ml of cold RBC lysis buffer (155 mM

NH4Cl, 12 mM NaHCO3 and 0.1 mM EDTA) and 5 min incubation. After

adding 5 ml cold FACS buffer, the samples were again centrifuged (400 g,

5 min, 4°C). The supernatant was discarded, 50 μl of Fc-blocking buffer

[anti-CD16/32 and 2% rat serum (liver) in FACS buffer] was added and the

cells were gently resuspended. After 10 min incubation, all samples were

filled up to 250 μl each and counted using a Guava cell-counting device.

After pelleting, the cells were stained for 30 min (both primary and

secondary antibody steps). The complete list of antibodies is supplied in

Table S5. Samples were acquired with FACSymphony™ A5 (BD

Biosciences) and analyzed using FlowJo™ Software.

Mitochondrial staining

To evaluate mitochondrial status, liver cells were stained using

MitoTracker® Green FM (Thermo Fisher Scientific, M7514) and

MitoSOX™ Red (Thermo Fisher Scientific, M36008). Following cell

counting, 5×105 cells were resuspended in FACS buffer and transferred into

a 96-well plate. For stained samples, the volume was adjusted to 50 μl with

FACS buffer, while unstained controls were adjusted to 100 μl. Next, 50 μl

of prewarmed (37°C) MitoTracker Green (0.25 μM) and MitoSOX Red

(1 μM) solution in HBSS was added to the stained samples. The samples

were incubated for 30 min at 37°C, after which 100 μl of FACS buffer was

added to all wells. The plate was centrifuged at 400 g for 5 min at 4°C, and

the supernatant was carefully discarded. The cells were then incubated with

the respective antibody mix (Table S5) for 30 min at 4°C. Following

staining, the samples were immediately analyzed on the flow cytometer.

Metabolic flow cytometry assay

Single-cell suspensions of P0 livers were blocked with anti-CD16/32 (1%)

and rat serum (2%) in FACS buffer, followed by surface marker staining for

30 min at 4°C. Cells were washed and fixed in 1% paraformaldehyde for

5 min, then permeabilized for 15 min with PBS supplemented with 0.4%

Triton™ X-100 (Sigma-Aldrich, X100). Intracellular staining was

performed for 1 h, 4°C. Intracellular antibodies were conjugated in-house

using lightning-link conjugation kits (Abcam) as previously described

(Heieis et al., 2023). The complete list of antibodies is supplied in Table S5.

Cells were analyzed on an ID7000™ 7-laser Spectral Cell Analyzer (Sony

Cooperation).

Liver glycogen assay

To access the glycogen content of perinatal liver tissue the Liver Glycogen

Assay Kit from Abcam (ab65620) was used. The kit components were

stored and dissolved following the manufacturer’s instructions. The used

liver samples were snap-frozen in liquid nitrogen and stored at −80°C until

the experiment. After defrosting, 10 mg of liver tissue per sample were

weighed in and the serum samples were diluted (1:25-1:100). The liver

tissue was then washed shortly with cold PBS and put into 500 μl of

ddH2O. Homogenization was performed with a pestle on ice and the

homogenates were boiled at 95°C for 10 min to inactivate enzymes. Further,

the boiled homogenates were centrifuged at 4°C, maximal speed, and the

supernatant was collected and stored at −20°C until the assay was

performed. The main assay procedure was performed as described in the

manufacturer’s instructions. All samples and the glycogen standard curve

were measured in technical duplicate. The plate was measure immediately

after the last step with a Tecan Infinite M200 microplate reader at Ex/

Em=535/587 nm. For analysis, the measured fluorescence from each sample

was corrected with a glucose control (no addition of glucoamylase) to

account for intrinsic differences in hepatic/systemic glucose levels.

Igf1 ELISA

To determine the amount of Igf1 present in the perinatal liver and serum the

Quantitative ELISA Mouse/Rat Igf1 Kit Liver Glycogen Assay Kit from

R&D Systems (MG100) was used. The kit components were stored and

dissolved following the manufacturer’s instructions. The samples were

snap-frozen in liquid nitrogen and stored at −80°C until the experiment was

performed. On the day of the experiment, 10 mg liver tissue was

homogenized in 500 μl ddH2O on ice and cell membranes broken through

two repeated freeze-thaw cycles. The liver homogenates were centrifuged at

5000 g (5 min, 4°C) and the supernatant was collected. The serum samples

were diluted 1:100 before analysis. For the ELISA, the manufacturer’s

instructions were followed. The optical density was determined using a

Tecan Infinite M200 plate reader at 450 nm with correction at 540 nm.

Insulin and glucagon ELISA

Serum samples were snap-frozen in liquid nitrogen and stored at −80°C

until the experiment was performed. Serum insulin and glucagon

concentrations were measured using the Mouse Insulin ELISA Kit

(EMINS, Thermo Fisher Scientific) and Glucagon ELISA (Mercodia)

according to the manufacturer’s instructions.

Lipidomics analysis

To evaluate differences in hepatic lipid metabolism, tandem mass

spectrometry of extracted lipids was performed. For this purpose, 10 mg

liver tissue was homogenized in 500 μl ddH2O on ice. Then, 50 μl of the

homogenate was transferred into a fresh Eppendorf tube and 500 μl

Extraction Mix [CHCl3/methanol 1/5 containing the following internal
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standards: 210 pmol PE(31:1), 396 pmol PC(31:1), 98 pmol PS(31:1),

84 pmol PI(34:0), 56 pmol PA(31:1), 51 pmol PG (28:0), 28 pmol

CL(56:0), 39 pmol LPA (17:0), 35 pmol LPC(17:1), 38 pmol LPE

(17:0), 32 pmol Cer(17:0), 99 pmol, SM(17:0), 55 pmol GlcCer(12:0),

14 pmol GM3 (18:0-D3), 339 pmol TG(50:1-d4), 111 pmol, CE(17:1),

64 pmol DG(31:1), 103 pmol MG(17:1), 724 pmol Chol(d6) and 45 pmol

Car(15:0)] was added. After 2 min of sonication in a bath sonicator, the

samples were spun at 20,000 g for 2 min. The supernatant was collected in a

new Eppendorf tube and 200 μl chloroform and 750 μl of 1 M NH4Ac in

ddH2O were added. Following quick manual shaking, the samples were

centrifuged at 20,000 g for 2 min again. The upper phase was carefully

removed, and the lower phase was transferred into a new Eppendorf tube.

The solvent was evaporated using a SpeedVac Vacuum Concentrator at

45°C for 20 min. The dried lipids were dissolved in 500 μl Spray Buffer

[isopropanol, methanol, ddH2O (all MS grade), 10 mM ammonium acetate,

0.1% acetic acid] by sonication for 5 min. Until measurement with a Thermo

Q Exactive™ Plus (Thermo Scientific) using positive mode, the samples

were stored at−20°C. Before the acquisition, the samples were sonicated for

5 min. For downstream analysis, the raw spectral data was converted to

.mzml files and loaded into the LipidXplorer software (Herzog et al., 2012).

Using both the sample lipid and the previously added internal standard, the

software calibrates the mass spectra and also discriminates based on the

mass of the different lipid species. The sample lipid concentration in pmol

was calculated referring to the intensity of the internal standard peak for each

sample and its known concentration in the added internal standard. Samples

with a high deviation of the internal standard were excluded from analysis.

The overall abundance of the respective lipid class was obtained by

summarizing the species’ amounts. Lipidomics datasets are accessible via

Metabolomics Workbench (Sud et al., 2016) under the study IDs ST003614

(WTSpi1/KOSpi1) and ST003702 (WTCsf1r/KOCsf1r).

Phosphoproteome analysis

Liver tissues were lysed in 4% sodium deoxycholate and 100mM Tris-HCl

(pH 8.5), followed by immediate boiling at 95°C for 5 min. The lysates were

then sonicated for 20 min at 4°C. Protein concentrations were determined

using the BCA protein assay, and samples were adjusted to 1 mg of total

protein. Samples were reduced and alkylated using 10 mM tris(2-

carboxyethyl)phosphine and 40 mM 2-chloroacetamide. Digestion was

performed overnight at 37°C using lysC and trypsin at an enzyme-to-protein

ratio of 1:100 (wt/wt). The digested peptides were treated with isopropanol

(final concentration 50%), trifluoroacetic acid (TFA; final concentration

6%) and monopotassium phosphate (KH2PO4; final concentration 1 mM).

Samples were mixed at 1500 rpm for 30 s, cleared by centrifugation

(2000 g, 15 min), and the supernatants were incubated with TiO2 beads

(Titansphere Phos-TiO Bulk, GL Sciences) at a bead-to-protein ratio of 12:1

(wt/wt) for 5 min at 40°C. The beads were washed five times with 60%

isopropanol and 5% TFA, and phosphopeptides were eluted using 40%

acetonitrile (ACN) and 15% ammonium hydroxide (NH₄OH, 25%, HPLC

grade). The eluates were collected by centrifugation (2000 g, 15 min) into

clean PCR tubes and concentrated using a SpeedVac for 20 min at 45°C.

Finally, phosphopeptides were desalted on SDB-RPS StageTips and

resuspended in 7 μl of 2% ACN and 0.3% TFA for LC-MS/MS analysis.

Phosphopeptide samples were analyzed using an EASY-nLC 1000

HPLC system (Thermo Fisher Scientific) coupled to a Q Exactive HFX

mass spectrometer (Thermo Fisher Scientific) via a nano-electrospray ion

source. The samples were loaded onto a 50-cm column with a 75 μm inner

diameter, packed in-house with C18 1.9 μM ReproSil particles (Dr. Maisch

GmbH). The column temperature was maintained at 50°C using a custom-

built column oven. Phosphopeptides were separated using a buffer system

consisting of buffer A (0.1% formic acid) and buffer B (0.1% formic acid,

80%ACN). A 120-min gradient was used for elution, starting at 5% buffer B

and increasing stepwise to 30% in 95 min, 60% in 5 min, and 95% in 20 min

at a flow rate of 300 nl/min. Phosphopeptides were analyzed using a data-

independent acquisition MS method. This included one full scan with a

range of 300-1650 m/z (AGC target=3e6, R=120,000 at 200 m/z, maximum

injection time=60 ms) followed by MS/MS scans with 32 windows where

precursor ions were fragmented with higher-energy collisional dissociation

(nce=27%, AGC target=1e6, R=30,000 at 200 m/z, maximum injection

time=54 ms). Data acquisition was performed using Xcalibur (v4.4.16.14,

Thermo Fisher Scientific).

Raw MS data files were processed using Spectronaut software

(v14.3.200701.47784). Mass spectra were searched against the mouse

UniProt FASTA database (July 2019, 63,439 entries) with a false discovery

rate (FDR) of <1% at the protein and peptide levels. Database search

parameters allowed a minimum peptide length of seven amino acids and a

maximum of two missed cleavages. Variable modifications included

phosphorylation on serine, threonine and tyrosine residues, N-terminal

acetylation, and methionine oxidation, while cysteine carbamidomethylation

was set as a fixedmodification. All bioinformatics analyses were conducted in

R (v4.0.4). Quantified phosphosites were filtered to include only thosewith at

least three valid values across biological replicates in at least one condition.

Missing values were imputed using a Gaussian distribution with a width of

0.3 and a downshift of 1.8 standard deviations of the measured values.

Differentially regulated phosphosites were identified using an unpaired, two-

sample t-test Student’s t-test with a permutation-based FDR of 5%. A 1D

annotation enrichment analysis was applied to identify systematic enrichment

or depletion of annotations and pathways (FDR<5%).

PAS staining

Periodic acid-Schiff’s with Hematoxylin (PAS-H) staining was performed

on paraffin-embedded tissue sections (5 µm thick) to analyze glycogen

storage in neonatal liver tissues. Tissue sections were incubated at 65°C for

30 min to melt the paraffin. Rehydration was performed by passing the

sections through a series of steps, each for 3 min: two changes of xylene,

followed by 100%, 95%, 90%, 80% and 70% ethanol, and finally distilled

water. Rehydrated sections were incubated in periodic acid solution (Carl

Roth, HP00) for 10 min to oxidize glycogen, rinsed in tap water for 3 min,

and briefly rinsed in distilled water. The sections were placed in Schiff’s

reagent (Carl Roth, X900.2) for 15 min. Following staining, sections were

washed in running tap water for 10 min then briefly rinsed in distilled water.

Counterstaining was performed using Hematoxylin (Carl Roth, T865) for

45 s to visualize nuclei. Excess Hematoxylin was removed by washing in tap

water for 3 min, followed by a brief rinse in distilled water. Sections were

passed through distilled water, 70%, 80%, 90%, 95% and 100% ethanol,

each for 3 min, and then cleared in two changes of xylene. Sections were

mounted with Entellan (Merck, 107961) and covered with glass coverslips.

Stained sections were examined and recorded with a light microscope. For

analysis of acquired images Fiji analysis software (v2.1.0/1.53c) was used.

First, the color threshold was set for the images and they were converted to

8-bit images. After setting an auto threshold, they were reverted, and the

color deconvoluted. Signal intensity for the PAS image planewas measured,

and all values were normalized using the respective WT reference.

Transmission electron microscopy

Transmission electron microscopy of mouse liver samples from the KOSpi1

mouse model was performed as described previously for other organs (Fazio

et al., 2022; Welz et al., 2022). To quantify cristae area of mitochondria,

imageswere acquired at a nominal magnification of ×20,000 andmitochondria

were manually singled out using ImageJ. Subsequently, we applied an

in-house-developed script utilizing ImageMagick (www.imagemagick.org).

This script binarized the mitochondrial images applying the same threshold

value for all samples.We then counted the black pixels in each mitochondrion

as a measure for mitochondrial mass. To obtain the cristae area, we subtracted

the black pixels from the overall mitochondrial pixel number. To calculate

the cristae area per mitochondria, we divided the cristae area through the

overall area. Livers obtained from P0 KOIgf1 mice and littermate controls

were fixed overnight in 0.1 M Caco (sodium cacodylate) buffer with 4%

paraformaldehyde and 2% glutaraldehyde. Subsequently, they were washed

with PBS, embedded in agarose, and cut into 50 µm thin cuts using a

vibratome. The sections were again fixed overnight as before and washed with

0.1 M Caco buffer. Until further processing, the cuts remained in 0.1 M Caco

buffer at 4°C. Image analysis and quantification of cellular glycogen areas

were performed in Fiji (ImageJ). Cell boundaries, nuclear area and glycogen

area within a hepatocyte were manually outlined using the polygon selection

tool, and the area was determined. The nuclear area was subtracted from total

cellular area to obtain cytosolic area, which was in turn divided by the sum of
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all glycogen-occupied areas. The resulting ratio was normalized to the average

WTIgf1 ratio of the respective litter. Ten hepatocytes were analyzed per mouse,

and the average normalized values plotted.

Perinatal liver culture and metabolic tracing

Newborn pups were euthanized immediately after birth by decapitation,

and the liver was collected in ice-cold culture buffer (Williams Medium

supplemented with 10% fetal calf serum, 1% L-glutamine and 1% Penicillin-

Streptomycin). For each replicate, 2-3 mg of the largest liver lobe was

carefully dissected and placed into a 48-well plate containing ice-cold culture

buffer. All subsequent steps were carried out in a sterile hood to maintain

sterility. Each liver piece was transferred onto a porous cell culture insert

(0.4 µm pore size), which was placed in a well of a 24-well plate containing

400 µl prewarmed culture buffer. The plate was incubated at 37°C with 5%

CO2 for 2 h. This incubation period allowed for the simultaneous genotyping

of the pups to ensure that only WTSpi1 and KOSpi1 samples were included in

the tracing experiment, excluding heterozygous (HETSpi1) samples. After

genotyping, the inserts with the liver tissue pieces were transferred to a new

24-well plate containing 400 µl prewarmed tracer medium (WilliamsMedium

without glucose, supplemented with 10% fetal calf serum, 1% L-glutamine

and 25 mM C13-labeled glucose). Recombinant Igf1 protein (R&D Systems,

791-MG) was added in the same way at a final concentration of 100 ng/ml.

The samples were incubated for 5 h at 37°C with 5% CO2. Following the

incubation, 100 µl of medium was collected and snap-frozen. The liver tissue

pieces were briefly washed with 0.9% NaCl and then placed in 250 µl

of methanol pre-cooled to −20°C. To each sample, 250 µl of pre-cooled

MS-grade water containing 1 µg/ml D6-glutaric acid (used as an internal

standard) was added, and the tissue was homogenized. The homogenate was

transferred to a fresh tube and stored at −80°C until further processing.

Metabolites were derivatized using a Gerstel MPS with 15 μl of 2% (w/v)

methoxyamine hydrochloride (Thermo Scientific) in pyridine and

15 μl N-tertbutyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA)

with 1% tert-butyldimethylchlorosilane (Regis Technologies). Derivatives

were measured by GC/MS with a 30 m DB-35MS+5 m Duraguard capillary

column (0.25 mm inner diameter, 0.25 µm film thickness) equipped with an

Agilent 7890B gas chromatograph (GC) connected to anAgilent 5977Amass

spectrometer (MS). The GC oven temperature was held at 80°C for 6 min and

subsequently increased at 6°C per minute until reaching 280°C where it was

held for 10 min. The quadropole was held at 150°C. The MS source operated

under electron impact ionization mode at 70 eV and was held at 230°C.

Full scan (70-800 m/z, 3.9 scans per second) as well as targeted ion

chromatogram measurements were conducted for pyruvate (174, 175, 176,

177, 178, 179; ten scans per second), lactate (261, 262, 263, 264, 265, 266,

267; ten scans per second), alanine (260, 261, 262, 263, 264, 265; ten scans

per second), citrate (591, 592, 593, 594, 595, 596, 597, 598, 599, 600; ten

scans per second), malate (419, 420, 421, 422, 423, 424, 425, 426; ten scans

per second) and aspartate (418, 419, 420, 421; ten scans per second).

All chromatograms were analyzed with MetaboliteDetector (Hiller et al.,

2009). [U-13C6]-glucose tracing datasets are accessible via Metabolomics

Workbench (Sud et al., 2016) under the project number ST003615.

Bulk RNA sequencing

Cells were stored in TRIzol at−80°C. The cDNA library for sequencing was

prepared following the SMART-Seq2 protocol. mRNAwas isolated, primed

using poly-T oligonucleotides, and then converted into cDNA via SMART

reverse transcription. Pre-amplification was performed using SMART

ISPCR, followed by fragmentation with the Nextera XT DNA Library

Preparation kit (Illumina), amplification and indexing. Library fragments

were then selected by size (300-400 bp) and purified using SPRIBeads

(Beckman-Coulter). Size distribution of the cDNA libraries was analyzed

using the Agilent high-sensitivity D5000 assay on the Tapestation 4200

system (Agilent). Quantification of cDNA libraries was completed with a

Qubit high-sensitivity dsDNA assay (Thermo Fisher). Sequencing

employed a 75 bp single-end configuration on the NextSeq500 system

(Illumina), using the NextSeq 500/550 High Output Kit v2.5. Kallisto

pseudo-alignment was applied to quantify transcript abundances from bulk

RNA-seq data (Bray et al., 2016). The files were processed using Kallisto

for transcript quantification, with the Gencode M16 mouse annotation

(https://www.gencodegenes.org/mouse/release_M16.html) applied to adjust

for library size based on the average transcript length. Read counts were

normalized with DESeq2 default size factor estimation, which corrects for

sequencing depth across samples. Low-expressed genes, defined as thosewith

fewer than ten total counts, were removed to enhance signal detection.

Statistical significance in gene expression was determined using theWald test

for pairwise comparisons (default method in DESeq2) Adjusted P-values

were calculated using the Benjamini–Hochberg method to control the FDR.

Genes with an adjusted P-value<0.05 and |log2fold change|>1.3 were

considered significantly differentially expressed. Normalized count values for

individual genes were visualized to assess expression differences. Genes were

ranked by differential expression for each condition, and the resulting ranked

gene list was used for GSEA on selected gene sets.

scRNA-seq library preparation and analysis

Single-cell suspensions were prepared as previously described. The cells

were then spun for 3 min at 50 g to enrich for hepatocytes. Both hepatocytes

and liver immune cells were utilized for single-cell analysis. To ensure that

hepatocytes were appropriately sized to fit into the wells of the Seq-Well

array, the cells were fixed to induce controlled shrinkage. Hepatocytes were

resuspended in PBS and fixed by the slow, dropwise addition of ice-cold

methanol at a 1:5 ratio (PBS:methanol) while gently stirring the solution

between additions. The suspension was incubated at −20°C for 30 min,

followed by 5 min on ice. Subsequently, the fixed cells were centrifuged at

1000 g for 5 min at 4°C, and the supernatant was carefully discarded. The

hepatocytes were resuspended in 500 µl of rehydration buffer containing

3×SSC (Sigma-Aldrich, S6639-1L), 1 mM dithiothreitol (Thermo Fisher

Scientific, R0862), 0.2 U/µl RNase inhibitor (Thermo Fisher Scientific,

AM2696) and 2 mM flavopiridol (Sigma-Aldrich, F3055). Cell loading,

barcoding and library preparation primarily followed the Seq-Well S3

protocol (Hughes et al., 2020), with two arrays per sample. Seq-Well arrays

were set up as described by Gierahn et al. (2017). Each array was loaded

with approximately 110,000 barcoded mRNA capture beads (ChemGenes,

MACOSKO-2011-10) and 30,000 cells. Following cell loading, cells were

lysed, mRNA captured, and cDNA synthesis was performed. For whole-

transcriptome amplification, beads from each array were divided into 18-24

PCR reactions with approximately 3000 beads per reaction (95°C for

3 min, four cycles of 98°C for 20 s, 65°C for 45 s, 63°C for 30 s, 72°C for

1 min; followed by 16 cycles of 98°C for 20 s, 67°C for 45 s, 72°C

for 3 min; final extension at 72°C for 5 min) using the KAPA HiFi Hotstart

Readymix PCR Kit (Kapa Biosystems, KK2602) and SMART PCR Primer

(AAGCAGTGGTATCAACGCAGAGT). Pooled PCR reactions (six to

eight per pool) were purified using AMPure XP SPRI Reagent (Beckman

Coulter) with sequential 0.6× and 1× volumetric ratios. For library

tagmentation and indexing, 200 pg of DNA from each purified WTA pool

was tagmented with the Nextera XT DNA Library Preparation Kit (8 min

at 55°C), followed by Tn5 transposase neutralization (5 min at room

temperature). Illumina indices were then attached to the tagmented products

(72°C for 3 min, 98°C for 30 s; 16 cycles of 95°C for 10 s, 55°C for 30 s,

72°C for 1 min; final extension at 72°C for 5 min). The library products were

purified using AMPure XP SPRI Reagent at 0.6× and 1× volumetric ratios.

The final library quality was assessed using a High Sensitivity D5000 assay

on a TapeStation 4200 (Agilent) and quantified with the Qubit high-

sensitivity dsDNA assay (Invitrogen). Seq-Well libraries were pooled

equimolarly and clustered at a 1.25 nM concentration with 10% PhiX on a

NovaSeq6000 system (S2 flow cell, 100 bp v1.5 chemistry). Sequencing

was paired-end, using a custom Drop-Seq Read 1 primer for 21 cycles, eight

cycles for the i7 index, and 61 cycles for Read 2. Single-cell data were

demultiplexed using bcl2fastq2 (v2.20). Fastq files from Seq-Well were

processed in a snakemake-based pre-processing pipeline (v0.31, available

at https://github.com/Hoohm/dropSeqPipe) that utilizes Drop-seq tools

provided by the McCarroll lab (Macosko; Basu et al., 2015). STAR

alignment within the pipeline was performed using the murine GENCODE

reference genome and transcriptome (mm10 release vM16; Team 2014).

To analyze liver cells, UMI-corrected expression matrices were processed

in R using Seurat (v4.1.0) (Hafemeister and Satija, 2019) From an initial

dataset of 407,803 barcodes and 43,126 genes, only protein-coding genes

were retained, reducing the dataset to 16,131 genes. Quality control
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measures (Luecken and Theis, 2019) identified 27,258 high-quality cells.

Ambient RNA contamination was corrected using SoupX (Young and

Behjati, 2020) further refining the dataset to 27,235 cells. Data normalization

and scalingwere performedwith SCTransform (Hafemeister and Satija, 2019)

and dimensionality reduction was achieved through principal component

analysis. The first 21 principal components were selected for downstream

analyses, including uniform manifold approximation and projection (UMAP)

visualization and the construction of a shared nearest neighbor graph.

Clustering was performed using the Louvain algorithm (Traag et al., 2019),

with resolution determined by Clustree v0.4.3 (Zappia and Oshlack, 2018)

and NbClust v3.0 (Charrad et al., 2014) analyses. Marker genes for each

cluster were identified using a Wilcoxon rank sum test (Haynes, 2013),

applying a log2 fold-change threshold of 0.25 and requiring expression in at

least 10% of cells. Cluster annotation was based on canonical marker genes.

To investigate functional phenotypes in hepatocytes, a Wilcoxon rank sum

test was performed without thresholds to identify all DEGs between WTSpi1

and KOSpi genes were ranked by average log2 fold-change for each genotype

and the top 100 genes were used for GO enrichment analysis (Yu et al., 2012;

Haynes, 2013) and the Mouse annotation database (org.Mm.eg.db) v3.12.0.

GSEA was conducted using ClusterProfiler to identify enriched biological

processes from the GO database (Ashburner et al., 2000). Statistical

significance of enriched terms was evaluated using a hypergeometric test

(Yu et al., 2015) with Bonferroni correction for multiple comparisons (Yu

et al., 2012, 2015; Haynes, 2013). Terms with adjusted P-values <0.05 were

considered significantly enriched. Developmental trajectories of hepatocyte

subclusters were inferred using Monocle3 v1.0.0 (Cao et al., 2019). For

trajectory construction, hepatocytes were subsetted from the liver scRNA-seq

dataset and the first 30 dimensions of the scRNA-seq data were utilized to

generate a UMAP focused exclusively on hepatocytes. A connection matrix

was computed using a modified partitioned approximate graph abstraction

(PAGA) algorithm (Wolf et al., 2017), followed by significance testing

of connections between clusters identified through PAGA and Louvain

clustering. Subsequently, a principal graph was constructed in the low-

dimensional space using a modified SimplePPT algorithm (Mao et al., 2015).

Pseudotime progression was determined by designating the node within

most immature hepatocyte cluster 0 as the root node based on hepatocyte

maturation marker expression, enabling the inference of developmental

relationships among hepatocyte subclusters. Intercellular communication

between hepatocytes and KCs was analyzed following the methods described

by Jin et al. (2021), utilizing CellChat v1.1.3. The Seurat object was split into

three datasets based on genotypes. Each dataset was converted into a CellChat

object using normalized and log1p-transformed expressionmatrices (Jin et al.,

2021). The dataset was then subset to include only genes associated with

known signaling pathways. Overexpressed ligand and receptor genes were

identified using the Wilcoxon rank sum test, without applying a P-value

threshold. Noise was mitigated by calculating the average expression of each

gene for each cell group, with weighted summation of gene expression

quantiles. The prediction of gene–gene interactions relied on protein–protein

interaction (PPI) networks sourced fromSTRINGDb (Szklarczyk et al., 2019)

under the assumption that physical interactions between ligands and receptors

follow the law of mass action. To achieve this, signaling gene expression

profiles were projected onto the PPI network using random walk network

propagation (Cowen et al., 2017). The interaction probability (or strength)

was modeled using the projected data, applying a trimming fraction of 0.01.

Communication pathways between cell groups were identified through

permutation testing. Additionally, social network analysis tools from the sna

package (Butts, 2008) were used to calculate information flow metrics,

including out-degree, in-degree, flow betweenness, and information

centrality, to evaluate intercellular communication.

Code and data availability

All steps, including cleaning, dimensionality reduction, clustering, DEG

testing, and GO enrichment analysis, were conducted using the docker image

alefrol94/scrnaseq.analysis:reticulate. Additional packages were managed

and tracked using the renv package (v0.14.0). Trajectory analysis of

hepatocyte subsets, performed with Monocle3 (Cao et al., 2019), utilized

the docker image jsschrepping/r_docker:jss_R403_S4cran. The complete

analysis code can be found at https://github.com/alefrol638?tab=repositories.

scRNA-seq datasets are accessible via NCBI’s Gene Expression Omnibus

(GEO) repository under accession number GSE285047. The bulk RNA-seq

raw transcriptome files and count data have been deposited in GEO and are

accessible under accession number GSE283799. Igf1 expression across

development was visualized based on data reported by Qiu et al. (2024).

Experimental design, quantification and statistical analysis

For the design of experiments, scientists were unaware of the experimental

groups whenever possible, as the animals exhibited no overt phenotype at the

time of sample processing. This was applied during various stages, such as

histological and transmission electron microscopy (TEM) analyses, where

subjective interpretation could introduce bias, but it was not feasible in all

assays. For example, genotyping PCR and certain analyses, such as flow

cytometry, revealed clear phenotypic differences, which could not be masked

from experimenters. To account for variability between experimental runs, we

normalized data to the mean value(s) of littermate controls collected on the

same day. This normalization was particularly important for measurements

such as the mean fluorescence intensity of flow cytometry markers and

most metabolic analyses, ensuring consistency and comparability across

experiments. Every reported sample (n) value represents the number of

biologically independent replicates. No statistical methods were used to

predetermine sample sizes, but sample numbers were based on standards in

the field and experimental feasibility. All statistical analyses, except for those

related to sequencing data, were conducted using GraphPad Prism software

(v5-8; GraphPad Software, RRID:SCR_002798).Mann–WhitneyU-tests and

paired/unpaired Student’s t-tests (e.g. paired tests for histological analysis due

to variability in staining intensity across experiments) were used for

comparisons between two groups, and mixed-effects model (REML) for

comparisons between four groups were performed depending on data

distribution and experimental design. Wald test was performed on the fold-

change gene expression of KCs and KC-like cells for pairwise comparisons.

Differences were considered statistically significant at P<0.05. Each dataset is

representative of at least two independent experiments, with a minimum of

three animals per group. Detailed descriptive statistics, the specific statistical

tests performed, and the number of samples analyzed are provided in the

corresponding figure legends.
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accessed directly via the Project DOI 10.21228/M8VJ9K. scRNA-seq datasets

are accessible via the GEO repository under accession number GSE285047.

Bulk RNA-seq raw transcriptome files and count data have been deposited
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relevant data and details of resources can be found within the article and its

supplementary information.
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