000276852 001__ 276852
000276852 005__ 20250225092442.0
000276852 0247_ $$2doi$$a10.1074/jbc.M116.759944
000276852 0247_ $$2pmid$$apmid:27899452
000276852 0247_ $$2pmc$$apmc:PMC5247653
000276852 0247_ $$2ISSN$$a0021-9258
000276852 0247_ $$2ISSN$$a1067-8816
000276852 0247_ $$2ISSN$$a1083-351X
000276852 037__ $$aDZNE-2025-00365
000276852 041__ $$aEnglish
000276852 082__ $$a610
000276852 1001_ $$aGiménez-Mascarell, Paula$$b0
000276852 245__ $$aStructural Basis of the Oncogenic Interaction of Phosphatase PRL-1 with the Magnesium Transporter CNNM2.
000276852 260__ $$aBethesda, MD$$bAmerican Soc. for Biochemistry and Molecular Biology$$c2017
000276852 3367_ $$2DRIVER$$aarticle
000276852 3367_ $$2DataCite$$aOutput Types/Journal article
000276852 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1740471849_16241
000276852 3367_ $$2BibTeX$$aARTICLE
000276852 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000276852 3367_ $$00$$2EndNote$$aJournal Article
000276852 500__ $$aISSN 0021-9258 not unique: **2 hits**.
000276852 520__ $$aPhosphatases of regenerating liver (PRLs), the most oncogenic of all protein-tyrosine phosphatases (PTPs), play a critical role in metastatic progression of cancers. Recent findings established a new paradigm by uncovering that their association with magnesium transporters of the cyclin M (CNNM) family causes a rise in intracellular magnesium levels that promote oncogenic transformation. Recently, however, essential roles for regulation of the circadian rhythm and reproduction of the CNNM family have been highlighted. Here, we describe the crystal structure of PRL-1 in complex with the Bateman module of CNNM2 (CNNM2BAT), which consists of two cystathionine β-synthase (CBS) domains (IPR000664) and represents an intracellular regulatory module of the transporter. The structure reveals a heterotetrameric association, consisting of a disc-like homodimer of CNNM2BAT bound to two independent PRL-1 molecules, each one located at opposite tips of the disc. The structure highlights the key role played by Asp-558 at the extended loop of the CBS2 motif of CNNM2 in maintaining the association between the two proteins and proves that the interaction between CNNM2 and PRL-1 occurs via the catalytic domain of the phosphatase. Our data shed new light on the structural basis underlying the interaction between PRL phosphatases and CNNM transporters and provides a hypothesis about the molecular mechanism by which PRL-1, upon binding to CNNM2, might increase the intracellular concentration of Mg2+ thereby contributing to tumor progression and metastasis. The availability of this structure sets the basis for the rational design of compounds modulating PRL-1 and CNNM2 activities.
000276852 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000276852 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000276852 650_7 $$2Other$$aPRL-1, CNNM2, CBS domain
000276852 650_7 $$2Other$$acancer
000276852 650_7 $$2Other$$acell proliferation
000276852 650_7 $$2Other$$amagnesium
000276852 650_7 $$2Other$$aphosphatase
000276852 650_7 $$2Other$$atransporter
000276852 650_7 $$2NLM Chemicals$$aCation Transport Proteins
000276852 650_7 $$2NLM Chemicals$$aCnnm2 protein, mouse
000276852 650_7 $$2NLM Chemicals$$aImmediate-Early Proteins
000276852 650_7 $$2NLM Chemicals$$aOncogene Proteins
000276852 650_7 $$0EC 3.1.3.48$$2NLM Chemicals$$aProtein Tyrosine Phosphatases
000276852 650_7 $$0EC 3.1.3.48$$2NLM Chemicals$$aPtp4a1 protein, mouse
000276852 650_7 $$0I38ZP9992A$$2NLM Chemicals$$aMagnesium
000276852 650_2 $$2MeSH$$aAnimals
000276852 650_2 $$2MeSH$$aCation Transport Proteins: chemistry
000276852 650_2 $$2MeSH$$aCation Transport Proteins: genetics
000276852 650_2 $$2MeSH$$aCation Transport Proteins: metabolism
000276852 650_2 $$2MeSH$$aImmediate-Early Proteins: chemistry
000276852 650_2 $$2MeSH$$aImmediate-Early Proteins: genetics
000276852 650_2 $$2MeSH$$aImmediate-Early Proteins: metabolism
000276852 650_2 $$2MeSH$$aMagnesium: chemistry
000276852 650_2 $$2MeSH$$aMagnesium: metabolism
000276852 650_2 $$2MeSH$$aMice
000276852 650_2 $$2MeSH$$aNeoplasm Metastasis
000276852 650_2 $$2MeSH$$aNeoplasms: genetics
000276852 650_2 $$2MeSH$$aNeoplasms: metabolism
000276852 650_2 $$2MeSH$$aNeoplasms: pathology
000276852 650_2 $$2MeSH$$aOncogene Proteins: chemistry
000276852 650_2 $$2MeSH$$aOncogene Proteins: genetics
000276852 650_2 $$2MeSH$$aOncogene Proteins: metabolism
000276852 650_2 $$2MeSH$$aProtein Binding
000276852 650_2 $$2MeSH$$aProtein Domains
000276852 650_2 $$2MeSH$$aProtein Structure, Secondary
000276852 650_2 $$2MeSH$$aProtein Tyrosine Phosphatases: chemistry
000276852 650_2 $$2MeSH$$aProtein Tyrosine Phosphatases: genetics
000276852 650_2 $$2MeSH$$aProtein Tyrosine Phosphatases: metabolism
000276852 7001_ $$aOyenarte, Iker$$b1
000276852 7001_ $$aHardy, Serge$$b2
000276852 7001_ $$0P:(DE-2719)9003035$$aBreiderhoff, Tilman$$b3$$udzne
000276852 7001_ $$aStuiver, Marchel$$b4
000276852 7001_ $$aKostantin, Elie$$b5
000276852 7001_ $$aDiercks, Tammo$$b6
000276852 7001_ $$aPey, Angel L$$b7
000276852 7001_ $$aEreño-Orbea, June$$b8
000276852 7001_ $$aMartínez-Chantar, María Luz$$b9
000276852 7001_ $$aKhalaf-Nazzal, Reham$$b10
000276852 7001_ $$aClaverie-Martin, Felix$$b11
000276852 7001_ $$aMüller, Dominik$$b12
000276852 7001_ $$aTremblay, Michel L$$b13
000276852 7001_ $$00000-0002-5856-9377$$aMartínez-Cruz, Luis Alfonso$$b14
000276852 773__ $$0PERI:(DE-600)2141744-1$$a10.1074/jbc.M116.759944$$gVol. 292, no. 3, p. 786 - 801$$n3$$p786 - 801$$tJBC papers in press$$v292$$x0021-9258$$y2017
000276852 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9003035$$aExternal Institute$$b3$$kExtern
000276852 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000276852 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ BIOL CHEM : 2022$$d2023-10-25
000276852 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
000276852 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
000276852 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-25
000276852 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:49:04Z
000276852 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:49:04Z
000276852 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:49:04Z
000276852 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
000276852 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-25
000276852 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
000276852 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
000276852 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-25
000276852 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-25
000276852 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
000276852 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-25
000276852 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-25
000276852 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-25
000276852 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-25
000276852 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-25
000276852 980__ $$ajournal
000276852 980__ $$aI:(DE-2719)1040260
000276852 9801_ $$aEXTERN4VITA