000280031 001__ 280031
000280031 005__ 20250721143402.0
000280031 0247_ $$2doi$$a10.1016/j.neuroimage.2015.01.032
000280031 0247_ $$2ISSN$$a1053-8119
000280031 0247_ $$2ISSN$$a1095-9572
000280031 037__ $$aDZNE-2025-00875
000280031 041__ $$aEnglish
000280031 082__ $$a610
000280031 1001_ $$aWachinger, Christian$$b0
000280031 245__ $$aBrainPrint: A discriminative characterization of brain morphology
000280031 260__ $$aOrlando, Fla.$$bAcademic Press$$c2015
000280031 3367_ $$2DRIVER$$aarticle
000280031 3367_ $$2DataCite$$aOutput Types/Journal article
000280031 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1753101153_29739
000280031 3367_ $$2BibTeX$$aARTICLE
000280031 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280031 3367_ $$00$$2EndNote$$aJournal Article
000280031 520__ $$aWe introduce BrainPrint, a compact and discriminative representation of brain morphology. BrainPrint captures shape information of an ensemble of cortical and subcortical structures by solving the eigenvalue problem of the 2D and 3D Laplace-Beltrami operator on triangular (boundary) and tetrahedral (volumetric) meshes. This discriminative characterization enables new ways to study the similarity between brains; the focus can either be on a specific brain structure of interest or on the overall brain similarity. We highlight four applications for BrainPrint in this article: (i) subject identification, (ii) age and sex prediction, (iii) brain asymmetry analysis, and (iv) potential genetic influences on brain morphology. The properties of BrainPrint require the derivation of new algorithms to account for the heterogeneous mix of brain structures with varying discriminative power. We conduct experiments on three datasets, including over 3000 MRI scans from the ADNI database, 436 MRI scans from the OASIS dataset, and 236 MRI scans from the VETSA twin study. All processing steps for obtaining the compact representation are fully automated, making this processing framework particularly attractive for handling large datasets.
000280031 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000280031 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000280031 650_7 $$2Other$$aBrain asymmetry
000280031 650_7 $$2Other$$aBrain shape
000280031 650_7 $$2Other$$aBrain similarity
000280031 650_7 $$2Other$$aLarge brain datasets
000280031 650_7 $$2Other$$aMorphological heritability
000280031 650_7 $$2Other$$aSubject identification
000280031 650_2 $$2MeSH$$aAge Factors
000280031 650_2 $$2MeSH$$aAged
000280031 650_2 $$2MeSH$$aBrain: anatomy & histology
000280031 650_2 $$2MeSH$$aBrain Mapping: methods
000280031 650_2 $$2MeSH$$aFemale
000280031 650_2 $$2MeSH$$aHumans
000280031 650_2 $$2MeSH$$aImaging, Three-Dimensional: methods
000280031 650_2 $$2MeSH$$aMagnetic Resonance Imaging: methods
000280031 650_2 $$2MeSH$$aMale
000280031 650_2 $$2MeSH$$aSex Factors
000280031 650_2 $$2MeSH$$aSignal Processing, Computer-Assisted
000280031 650_2 $$2MeSH$$aTwins: genetics
000280031 7001_ $$aGolland, Polina$$b1
000280031 7001_ $$aKremen, William$$b2
000280031 7001_ $$aFischl, Bruce$$b3
000280031 7001_ $$0P:(DE-2719)2812134$$aReuter, Martin$$b4$$eLast author$$udzne
000280031 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2015.01.032$$gVol. 109, p. 232 - 248$$p232 - 248$$tNeuroImage$$v109$$x1053-8119$$y2015
000280031 8564_ $$uhttps://pub.dzne.de/record/280031/files/DZNE-2025-00875_Restricted.pdf
000280031 8564_ $$uhttps://pub.dzne.de/record/280031/files/DZNE-2025-00875_Restricted.pdf?subformat=pdfa$$xpdfa
000280031 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)2812134$$aExternal Institute$$b4$$kExtern
000280031 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000280031 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-16$$wger
000280031 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2022$$d2024-12-16
000280031 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
000280031 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
000280031 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:47:40Z
000280031 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:47:40Z
000280031 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:47:40Z
000280031 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
000280031 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
000280031 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
000280031 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-16
000280031 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
000280031 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-16
000280031 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-16
000280031 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
000280031 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
000280031 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2022$$d2024-12-16
000280031 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-16
000280031 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-16
000280031 980__ $$ajournal
000280031 980__ $$aI:(DE-2719)1040310
000280031 980__ $$aI:(DE-2719)1040260
000280031 9801_ $$aEXTERN4VITA