Home > Institute Collections > BN DZNE > BN DZNE-AG Reuter > BrainPrint: A discriminative characterization of brain morphology > print |
001 | 280031 | ||
005 | 20250721143402.0 | ||
024 | 7 | _ | |a 10.1016/j.neuroimage.2015.01.032 |2 doi |
024 | 7 | _ | |a 1053-8119 |2 ISSN |
024 | 7 | _ | |a 1095-9572 |2 ISSN |
037 | _ | _ | |a DZNE-2025-00875 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Wachinger, Christian |b 0 |
245 | _ | _ | |a BrainPrint: A discriminative characterization of brain morphology |
260 | _ | _ | |a Orlando, Fla. |c 2015 |b Academic Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1753101153_29739 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We introduce BrainPrint, a compact and discriminative representation of brain morphology. BrainPrint captures shape information of an ensemble of cortical and subcortical structures by solving the eigenvalue problem of the 2D and 3D Laplace-Beltrami operator on triangular (boundary) and tetrahedral (volumetric) meshes. This discriminative characterization enables new ways to study the similarity between brains; the focus can either be on a specific brain structure of interest or on the overall brain similarity. We highlight four applications for BrainPrint in this article: (i) subject identification, (ii) age and sex prediction, (iii) brain asymmetry analysis, and (iv) potential genetic influences on brain morphology. The properties of BrainPrint require the derivation of new algorithms to account for the heterogeneous mix of brain structures with varying discriminative power. We conduct experiments on three datasets, including over 3000 MRI scans from the ADNI database, 436 MRI scans from the OASIS dataset, and 236 MRI scans from the VETSA twin study. All processing steps for obtaining the compact representation are fully automated, making this processing framework particularly attractive for handling large datasets. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: pub.dzne.de |
650 | _ | 7 | |a Brain asymmetry |2 Other |
650 | _ | 7 | |a Brain shape |2 Other |
650 | _ | 7 | |a Brain similarity |2 Other |
650 | _ | 7 | |a Large brain datasets |2 Other |
650 | _ | 7 | |a Morphological heritability |2 Other |
650 | _ | 7 | |a Subject identification |2 Other |
650 | _ | 2 | |a Age Factors |2 MeSH |
650 | _ | 2 | |a Aged |2 MeSH |
650 | _ | 2 | |a Brain: anatomy & histology |2 MeSH |
650 | _ | 2 | |a Brain Mapping: methods |2 MeSH |
650 | _ | 2 | |a Female |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Imaging, Three-Dimensional: methods |2 MeSH |
650 | _ | 2 | |a Magnetic Resonance Imaging: methods |2 MeSH |
650 | _ | 2 | |a Male |2 MeSH |
650 | _ | 2 | |a Sex Factors |2 MeSH |
650 | _ | 2 | |a Signal Processing, Computer-Assisted |2 MeSH |
650 | _ | 2 | |a Twins: genetics |2 MeSH |
700 | 1 | _ | |a Golland, Polina |b 1 |
700 | 1 | _ | |a Kremen, William |b 2 |
700 | 1 | _ | |a Fischl, Bruce |b 3 |
700 | 1 | _ | |a Reuter, Martin |0 P:(DE-2719)2812134 |b 4 |e Last author |u dzne |
773 | _ | _ | |a 10.1016/j.neuroimage.2015.01.032 |g Vol. 109, p. 232 - 248 |0 PERI:(DE-600)1471418-8 |p 232 - 248 |t NeuroImage |v 109 |y 2015 |x 1053-8119 |
856 | 4 | _ | |u https://pub.dzne.de/record/280031/files/DZNE-2025-00875_Restricted.pdf |
856 | 4 | _ | |u https://pub.dzne.de/record/280031/files/DZNE-2025-00875_Restricted.pdf?subformat=pdfa |x pdfa |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-2719)2812134 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-16 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEUROIMAGE : 2022 |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T08:47:40Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T08:47:40Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-05-02T08:47:40Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-16 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-16 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-16 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NEUROIMAGE : 2022 |d 2024-12-16 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-16 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-16 |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-2719)1040310 |
980 | _ | _ | |a I:(DE-2719)1040260 |
980 | 1 | _ | |a EXTERN4VITA |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|