| Home > Publications Database > A Bayesian approach to genetic association studies with family-based designs. > print |
| 001 | 136111 | ||
| 005 | 20240321220019.0 | ||
| 024 | 7 | _ | |a 10.1002/gepi.20513 |2 doi |
| 024 | 7 | _ | |a pmid:20818722 |2 pmid |
| 024 | 7 | _ | |a pmc:PMC3349938 |2 pmc |
| 024 | 7 | _ | |a 0741-0395 |2 ISSN |
| 024 | 7 | _ | |a 1098-2272 |2 ISSN |
| 024 | 7 | _ | |a altmetric:79866364 |2 altmetric |
| 037 | _ | _ | |a DZNE-2020-02433 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Naylor, Melissa G |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a A Bayesian approach to genetic association studies with family-based designs. |
| 260 | _ | _ | |a New York, NY |c 2010 |b Wiley-Liss |
| 264 | _ | 1 | |3 online |2 Crossref |b Wiley |c 2010-08-30 |
| 264 | _ | 1 | |3 print |2 Crossref |b Wiley |c 2010-09-01 |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1586875388_18506 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a For genome-wide association studies with family-based designs, we propose a Bayesian approach. We show that standard transmission disequilibrium test and family-based association test statistics can naturally be implemented in a Bayesian framework, allowing flexible specification of the likelihood and prior odds. We construct a Bayes factor conditional on the offspring phenotype and parental genotype data and then use the data we conditioned on to inform the prior odds for each marker. In the construction of the prior odds, the evidence for association for each single marker is obtained at the population-level by estimating its genetic effect size by fitting the conditional mean model. Since such genetic effect size estimates are statistically independent of the effect size estimation within the families, the actual data set can inform the construction of the prior odds without any statistical penalty. In contrast to Bayesian approaches that have recently been proposed for genome-wide association studies, our approach does not require assumptions about the genetic effect size; this makes the proposed method entirely data-driven. The power of the approach was assessed through simulation. We then applied the approach to a genome-wide association scan to search for associations between single nucleotide polymorphisms and body mass index in the Childhood Asthma Management Program data. |
| 536 | _ | _ | |a 345 - Population Studies and Genetics (POF3-345) |0 G:(DE-HGF)POF3-345 |c POF3-345 |f POF III |x 0 |
| 542 | _ | _ | |i 2015-09-01 |2 Crossref |u http://doi.wiley.com/10.1002/tdm_license_1.1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
| 650 | _ | 2 | |a Asthma: genetics |2 MeSH |
| 650 | _ | 2 | |a Bayes Theorem |2 MeSH |
| 650 | _ | 2 | |a Body Mass Index |2 MeSH |
| 650 | _ | 2 | |a Child |2 MeSH |
| 650 | _ | 2 | |a Genome-Wide Association Study: methods |2 MeSH |
| 650 | _ | 2 | |a Genotype |2 MeSH |
| 650 | _ | 2 | |a Humans |2 MeSH |
| 650 | _ | 2 | |a Linkage Disequilibrium |2 MeSH |
| 650 | _ | 2 | |a Models, Genetic |2 MeSH |
| 650 | _ | 2 | |a Models, Statistical |2 MeSH |
| 650 | _ | 2 | |a Phenotype |2 MeSH |
| 650 | _ | 2 | |a Polymorphism, Single Nucleotide |2 MeSH |
| 700 | 1 | _ | |a Weiss, Scott T |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Lange, Christoph |0 P:(DE-2719)9000181 |b 2 |e Last author |
| 773 | 1 | 8 | |a 10.1002/gepi.20513 |b : Wiley, 2010-08-30 |n 6 |p 569-574 |3 journal-article |2 Crossref |t Genetic Epidemiology |v 34 |y 2010 |x 0741-0395 |
| 773 | _ | _ | |a 10.1002/gepi.20513 |g Vol. 34, no. 6, p. 569 - 574 |0 PERI:(DE-600)1492643-X |n 6 |q 34:6<569 - 574 |p 569-574 |t Genetic epidemiology |v 34 |y 2010 |x 0741-0395 |
| 856 | 7 | _ | |2 Pubmed Central |u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349938 |
| 909 | C | O | |p VDB |o oai:pub.dzne.de:136111 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 2 |6 P:(DE-2719)9000181 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Gesundheit |l Erkrankungen des Nervensystems |1 G:(DE-HGF)POF3-340 |0 G:(DE-HGF)POF3-345 |2 G:(DE-HGF)POF3-300 |v Population Studies and Genetics |x 0 |
| 914 | 1 | _ | |y 2010 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b GENET EPIDEMIOL : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 920 | 1 | _ | |0 I:(DE-2719)7000008 |k U T4 Researchers - Bonn |l U T4 Researchers - Bonn |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-2719)7000008 |
| 980 | _ | _ | |a UNRESTRICTED |
| 999 | C | 5 | |a 10.1016/S0197-2456(98)00044-0 |9 -- missing cx lookup -- |2 Crossref |o 10.1016/S0197-2456(98)00044-0 |
| 999 | C | 5 | |a 10.1038/nature05911 |9 -- missing cx lookup -- |2 Crossref |o 10.1038/nature05911 |
| 999 | C | 5 | |y 2000 |2 Crossref |o Kuczmarski 2000 |
| 999 | C | 5 | |a 10.1159/000073728 |9 -- missing cx lookup -- |2 Crossref |o 10.1159/000073728 |
| 999 | C | 5 | |y 2007 |2 Crossref |t R: A language and environment for statistical computing |o R Development Core Team R: A language and environment for statistical computing 2007 |
| 999 | C | 5 | |a 10.1038/ng1582 |9 -- missing cx lookup -- |2 Crossref |o 10.1038/ng1582 |
| 999 | C | 5 | |y 2008a |2 Crossref |o Wakefield 2008a |
| 999 | C | 5 | |a 10.1093/ije/dym257 |9 -- missing cx lookup -- |2 Crossref |o 10.1093/ije/dym257 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|