001     136182
005     20240423115936.0
024 7 _ |a 10.1371/journal.pgen.1001289
|2 doi
024 7 _ |a pmid:21304886
|2 pmid
024 7 _ |a pmc:PMC3033379
|2 pmc
024 7 _ |a 1553-7390
|2 ISSN
024 7 _ |a 1553-7404
|2 ISSN
037 _ _ |a DZNE-2020-02504
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Ionita-Laza, Iuliana
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a A new testing strategy to identify rare variants with either risk or protective effect on disease.
260 _ _ |a San Francisco, Calif.
|c 2011
|b Public Library of Science
264 _ 1 |3 online
|2 Crossref
|b Public Library of Science (PLoS)
|c 2011-02-03
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1713864303_10934
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Rapid advances in sequencing technologies set the stage for the large-scale medical sequencing efforts to be performed in the near future, with the goal of assessing the importance of rare variants in complex diseases. The discovery of new disease susceptibility genes requires powerful statistical methods for rare variant analysis. The low frequency and the expected large number of such variants pose great difficulties for the analysis of these data. We propose here a robust and powerful testing strategy to study the role rare variants may play in affecting susceptibility to complex traits. The strategy is based on assessing whether rare variants in a genetic region collectively occur at significantly higher frequencies in cases compared with controls (or vice versa). A main feature of the proposed methodology is that, although it is an overall test assessing a possibly large number of rare variants simultaneously, the disease variants can be both protective and risk variants, with moderate decreases in statistical power when both types of variants are present. Using simulations, we show that this approach can be powerful under complex and general disease models, as well as in larger genetic regions where the proportion of disease susceptibility variants may be small. Comparisons with previously published tests on simulated data show that the proposed approach can have better power than the existing methods. An application to a recently published study on Type-1 Diabetes finds rare variants in gene IFIH1 to be protective against Type-1 Diabetes.
536 _ _ |a 345 - Population Studies and Genetics (POF3-345)
|0 G:(DE-HGF)POF3-345
|c POF3-345
|f POF III
|x 0
542 _ _ |i 2011-02-03
|2 Crossref
|u http://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a IFIH1 protein, human
|0 EC 3.6.1.-
|2 NLM Chemicals
650 _ 7 |a DEAD-box RNA Helicases
|0 EC 3.6.4.13
|2 NLM Chemicals
650 _ 7 |a Interferon-Induced Helicase, IFIH1
|0 EC 3.6.4.13
|2 NLM Chemicals
650 _ 2 |a Algorithms
|2 MeSH
650 _ 2 |a Computer Simulation
|2 MeSH
650 _ 2 |a DEAD-box RNA Helicases: genetics
|2 MeSH
650 _ 2 |a Data Interpretation, Statistical
|2 MeSH
650 _ 2 |a Diabetes Mellitus, Type 1: genetics
|2 MeSH
650 _ 2 |a Genetic Predisposition to Disease
|2 MeSH
650 _ 2 |a Genetic Testing: statistics & numerical data
|2 MeSH
650 _ 2 |a Genetic Variation
|2 MeSH
650 _ 2 |a Genome-Wide Association Study: statistics & numerical data
|2 MeSH
650 _ 2 |a Haplotypes: genetics
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Interferon-Induced Helicase, IFIH1
|2 MeSH
650 _ 2 |a Risk Factors
|2 MeSH
650 _ 2 |a Sequence Analysis, DNA
|2 MeSH
700 1 _ |a Buxbaum, Joseph D
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Laird, Nan M
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lange, Christoph
|0 P:(DE-2719)9000181
|b 3
|e Last author
773 1 8 |a 10.1371/journal.pgen.1001289
|b : Public Library of Science (PLoS), 2011-02-03
|n 2
|p e1001289
|3 journal-article
|2 Crossref
|t PLoS Genetics
|v 7
|y 2011
|x 1553-7404
773 _ _ |a 10.1371/journal.pgen.1001289
|g Vol. 7, no. 2, p. e1001289 -
|0 PERI:(DE-600)2186725-2
|n 2
|q 7:2|p e1001289
|t PLoS Genetics
|v 7
|y 2011
|x 1553-7404
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/136182/files/DZNE-2020-02504.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/136182/files/DZNE-2020-02504.pdf?subformat=pdfa
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033379
909 C O |o oai:pub.dzne.de:136182
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9000181
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-345
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Population Studies and Genetics
|x 0
914 1 _ |y 2011
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS GENET : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PLOS GENET : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
920 1 _ |0 I:(DE-2719)7000008
|k U T4 Researchers - Bonn
|l U T4 Researchers - Bonn
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)7000008
980 1 _ |a FullTexts
999 C 5 |9 -- missing cx lookup --
|a 10.1038/ng1195-241
|2 Crossref
|o 10.1038/ng1195-241
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nrg2344
|2 Crossref
|o 10.1038/nrg2344
999 C 5 |2 Crossref
|o LA Hindorff
999 C 5 |9 -- missing cx lookup --
|a 10.1038/456018a
|2 Crossref
|o 10.1038/456018a
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nature08494
|2 Crossref
|o 10.1038/nature08494
999 C 5 |9 -- missing cx lookup --
|a 10.1073/pnas.0407187101
|2 Crossref
|o 10.1073/pnas.0407187101
999 C 5 |9 -- missing cx lookup --
|a 10.1126/science.1099870
|2 Crossref
|o 10.1126/science.1099870
999 C 5 |9 -- missing cx lookup --
|a 10.4161/cc.4.4.1591
|2 Crossref
|o 10.4161/cc.4.4.1591
999 C 5 |9 -- missing cx lookup --
|a 10.1073/pnas.0508483103
|2 Crossref
|o 10.1073/pnas.0508483103
999 C 5 |9 -- missing cx lookup --
|a 10.1038/ng.118
|2 Crossref
|o 10.1038/ng.118
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nature07229
|2 Crossref
|o 10.1038/nature07229
999 C 5 |9 -- missing cx lookup --
|a 10.1126/science.1155174
|2 Crossref
|o 10.1126/science.1155174
999 C 5 |9 -- missing cx lookup --
|a 10.1056/NEJMoa075974
|2 Crossref
|o 10.1056/NEJMoa075974
999 C 5 |9 -- missing cx lookup --
|a 10.1038/ng.292
|2 Crossref
|o 10.1038/ng.292
999 C 5 |9 -- missing cx lookup --
|a 10.1126/science.1167728
|2 Crossref
|o 10.1126/science.1167728
999 C 5 |9 -- missing cx lookup --
|a 10.1086/321272
|2 Crossref
|o 10.1086/321272
999 C 5 |9 -- missing cx lookup --
|a 10.1093/hmg/11.20.2417
|2 Crossref
|o 10.1093/hmg/11.20.2417
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.tig.2007.12.007
|2 Crossref
|o 10.1016/j.tig.2007.12.007
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nbt1486
|2 Crossref
|o 10.1038/nbt1486
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.ajhg.2009.06.022
|2 Crossref
|o 10.1016/j.ajhg.2009.06.022
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nrg2626
|2 Crossref
|o 10.1038/nrg2626
999 C 5 |9 -- missing cx lookup --
|a 10.1002/gepi.20450
|2 Crossref
|o 10.1002/gepi.20450
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.ajhg.2008.06.024
|2 Crossref
|o 10.1016/j.ajhg.2008.06.024
999 C 5 |9 -- missing cx lookup --
|a 10.1371/journal.pgen.1000384
|2 Crossref
|o 10.1371/journal.pgen.1000384
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.ajhg.2010.04.005
|2 Crossref
|o 10.1016/j.ajhg.2010.04.005
999 C 5 |y 2009
|2 Crossref
|o SB Ng 2009
999 C 5 |9 -- missing cx lookup --
|a 10.1093/bioinformatics/btm138
|2 Crossref
|o 10.1093/bioinformatics/btm138
999 C 5 |y 1949
|2 Crossref
|o S Wright 1949


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21