001     136284
005     20240321220036.0
024 7 _ |a 10.1016/j.neuron.2011.05.043
|2 doi
024 7 _ |a pmid:21835347
|2 pmid
024 7 _ |a 0896-6273
|2 ISSN
024 7 _ |a 1097-4199
|2 ISSN
024 7 _ |a altmetric:246418
|2 altmetric
037 _ _ |a DZNE-2020-02606
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Krueppel, Roland
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Dendritic integration in hippocampal dentate granule cells.
260 _ _ |a New York, NY
|c 2011
|b Elsevier
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2011-08-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710773942_18974
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hippocampal granule cells are important relay stations that transfer information from the entorhinal cortex into the hippocampus proper. This process is critically determined by the integrative properties of granule cell dendrites. However, their small diameter has so far hampered efforts to examine their properties directly. Using a combination of dual somatodendritic patch-clamp recordings and multiphoton glutamate uncaging, we now show that the integrative properties of granule cell dendrites differ substantially from other principal neurons. Due to a very strong dendritic voltage attenuation, the impact of individual synapses on granule cell output is low. At the same time, integration is linearized by voltage-dependent boosting mechanisms, only weakly affected by input synchrony, and independent of input location. These experiments establish that dentate granule cell dendritic properties are optimized for linear integration and strong attenuation of synaptic input from the entorhinal cortex, which may contribute to the sparse activity of granule cells in vivo.
536 _ _ |a 341 - Molecular Signaling (POF3-341)
|0 G:(DE-HGF)POF3-341
|c POF3-341
|f POF III
|x 0
542 _ _ |i 2011-08-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2013-07-17
|2 Crossref
|u https://www.elsevier.com/open-access/userlicense/1.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 2 |a Action Potentials: physiology
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Computer Simulation: statistics & numerical data
|2 MeSH
650 _ 2 |a Dendrites: physiology
|2 MeSH
650 _ 2 |a Dentate Gyrus: cytology
|2 MeSH
650 _ 2 |a Dentate Gyrus: physiology
|2 MeSH
650 _ 2 |a Electrophysiology: methods
|2 MeSH
650 _ 2 |a Excitatory Postsynaptic Potentials: physiology
|2 MeSH
650 _ 2 |a Microscopy: methods
|2 MeSH
650 _ 2 |a Patch-Clamp Techniques: methods
|2 MeSH
650 _ 2 |a Pyramidal Cells: physiology
|2 MeSH
650 _ 2 |a Rats
|2 MeSH
650 _ 2 |a Rats, Wistar
|2 MeSH
650 _ 2 |a Synaptic Transmission: physiology
|2 MeSH
700 1 _ |a Remy, Stefan
|0 P:(DE-2719)2810375
|b 1
|u dzne
700 1 _ |a Beck, Heinz
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
773 1 8 |a 10.1016/j.neuron.2011.05.043
|b : Elsevier BV, 2011-08-01
|n 3
|p 512-528
|3 journal-article
|2 Crossref
|t Neuron
|v 71
|y 2011
|x 0896-6273
773 _ _ |a 10.1016/j.neuron.2011.05.043
|g Vol. 71, no. 3, p. 512 - 528
|0 PERI:(DE-600)2001944-0
|n 3
|q 71:3<512 - 528
|p 512-528
|t Neuron
|v 71
|y 2011
|x 0896-6273
856 4 _ |u https://pub.dzne.de/record/136284/files/DZNE-2020-02606_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/136284/files/DZNE-2020-02606_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:136284
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2810375
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-341
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Molecular Signaling
|x 0
914 1 _ |y 2011
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURON : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NEURON : 2017
920 1 _ |0 I:(DE-2719)1013006
|k AG Remy
|l Neuronal Networks
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1013006
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21