001     136490
005     20240321220058.0
024 7 _ |a 10.1089/ars.2011.4173
|2 doi
024 7 _ |a pmid:22229260
|2 pmid
024 7 _ |a pmc:PMC3329950
|2 pmc
024 7 _ |a 1523-0864
|2 ISSN
024 7 _ |a 1557-7716
|2 ISSN
037 _ _ |a DZNE-2020-02812
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Leuner, Kristina
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation.
260 _ _ |a Larchmont, NY
|c 2012
|b Liebert
264 _ 1 |3 print
|2 Crossref
|b Mary Ann Liebert Inc
|c 2012-06-15
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1588242339_17522
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Intracellular amyloid beta (Aβ) oligomers and extracellular Aβ plaques are key players in the progression of sporadic Alzheimer's disease (AD). Still, the molecular signals triggering Aβ production are largely unclear. We asked whether mitochondrion-derived reactive oxygen species (ROS) are sufficient to increase Aβ generation and thereby initiate a vicious cycle further impairing mitochondrial function.Complex I and III dysfunction was induced in a cell model using the respiratory inhibitors rotenone and antimycin, resulting in mitochondrial dysfunction and enhanced ROS levels. Both treatments lead to elevated levels of Aβ. Presence of an antioxidant rescued mitochondrial function and reduced formation of Aβ, demonstrating that the observed effects depended on ROS. Conversely, cells overproducing Aβ showed impairment of mitochondrial function such as comprised mitochondrial respiration, strongly altered morphology, and reduced intracellular mobility of mitochondria. Again, the capability of these cells to generate Aβ was partly reduced by an antioxidant, indicating that Aβ formation was also ROS dependent. Moreover, mice with a genetic defect in complex I, or AD mice treated with a complex I inhibitor, showed enhanced Aβ levels in vivo.We show for the first time that mitochondrion-derived ROS are sufficient to trigger Aβ production in vitro and in vivo.Several lines of evidence show that mitochondrion-derived ROS result in enhanced amyloidogenic amyloid precursor protein processing, and that Aβ itself leads to mitochondrial dysfunction and increased ROS levels. We propose that starting from mitochondrial dysfunction a vicious cycle is triggered that contributes to the pathogenesis of sporadic AD.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Amyloid beta-Peptides
|2 NLM Chemicals
650 _ 7 |a Reactive Oxygen Species
|2 NLM Chemicals
650 _ 7 |a Rotenone
|0 03L9OT429T
|2 NLM Chemicals
650 _ 7 |a antimycin
|0 11118-72-2
|2 NLM Chemicals
650 _ 7 |a Antimycin A
|0 642-15-9
|2 NLM Chemicals
650 _ 7 |a Amyloid Precursor Protein Secretases
|0 EC 3.4.-
|2 NLM Chemicals
650 _ 7 |a Aspartic Acid Endopeptidases
|0 EC 3.4.23.-
|2 NLM Chemicals
650 _ 7 |a BACE1 protein, human
|0 EC 3.4.23.46
|2 NLM Chemicals
650 _ 2 |a Alzheimer Disease: metabolism
|2 MeSH
650 _ 2 |a Amyloid Precursor Protein Secretases: genetics
|2 MeSH
650 _ 2 |a Amyloid Precursor Protein Secretases: metabolism
|2 MeSH
650 _ 2 |a Amyloid beta-Peptides: metabolism
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Antimycin A: analogs & derivatives
|2 MeSH
650 _ 2 |a Antimycin A: pharmacology
|2 MeSH
650 _ 2 |a Aspartic Acid Endopeptidases: genetics
|2 MeSH
650 _ 2 |a Aspartic Acid Endopeptidases: metabolism
|2 MeSH
650 _ 2 |a Cell Line
|2 MeSH
650 _ 2 |a Enzyme-Linked Immunosorbent Assay
|2 MeSH
650 _ 2 |a Flow Cytometry
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Mice, Mutant Strains
|2 MeSH
650 _ 2 |a Microscopy, Confocal
|2 MeSH
650 _ 2 |a Mitochondria: drug effects
|2 MeSH
650 _ 2 |a Mitochondria: metabolism
|2 MeSH
650 _ 2 |a Reactive Oxygen Species: metabolism
|2 MeSH
650 _ 2 |a Rotenone: pharmacology
|2 MeSH
700 1 _ |a Schütt, Tanja
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kurz, Christopher
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Eckert, Schamim H
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schiller, Carola
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Occhipinti, Angelo
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mai, Sören
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jendrach, Marina
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Eckert, Gunter P
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kruse, Shane E
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Palmiter, Richard D
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Brandt, Ulrich
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Dröse, Stephan
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Wittig, Ilka
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Willem, Michael
|0 P:(DE-2719)9000433
|b 14
|u dzne
700 1 _ |a Haass, Christian
|0 P:(DE-2719)2202037
|b 15
|u dzne
700 1 _ |a Reichert, Andreas S
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Müller, Walter E
|0 P:(DE-HGF)0
|b 17
773 1 8 |a 10.1089/ars.2011.4173
|b : Mary Ann Liebert Inc, 2012-06-15
|n 12
|p 1421-1433
|3 journal-article
|2 Crossref
|t Antioxidants & Redox Signaling
|v 16
|y 2012
|x 1523-0864
773 _ _ |a 10.1089/ars.2011.4173
|g Vol. 16, no. 12, p. 1421 - 1433
|0 PERI:(DE-600)2039747-1
|n 12
|q 16:12<1421 - 1433
|p 1421-1433
|t Antioxidants & redox signaling
|v 16
|y 2012
|x 1523-0864
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329950
909 C O |o oai:pub.dzne.de:136490
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)9000433
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 P:(DE-2719)2202037
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|2 G:(DE-HGF)POF3-300
|v Disease Mechanisms and Model Systems
|x 0
914 1 _ |y 2012
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANTIOXID REDOX SIGN : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ANTIOXID REDOX SIGN : 2017
920 1 _ |0 I:(DE-2719)5000048
|k Ext LMU
|l Ludwig-Maximilians-University
|x 0
920 1 _ |0 I:(DE-2719)1110007
|k AG Haass old
|l ALS, FTLD and Zebrafish models
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)5000048
980 _ _ |a I:(DE-2719)5000015
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21