Home > Publications Database > PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. > print |
001 | 136710 | ||
005 | 20240321220125.0 | ||
024 | 7 | _ | |a 10.1523/JNEUROSCI.1569-12.2012 |2 doi |
024 | 7 | _ | |a pmid:23197723 |2 pmid |
024 | 7 | _ | |a pmc:PMC6621845 |2 pmc |
024 | 7 | _ | |a 0270-6474 |2 ISSN |
024 | 7 | _ | |a 1529-2401 |2 ISSN |
024 | 7 | _ | |a altmetric:4243638 |2 altmetric |
037 | _ | _ | |a DZNE-2020-03032 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Yamanaka, Mitsugu |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. |
260 | _ | _ | |a Washington, DC |c 2012 |b Soc.57413 |
264 | _ | 1 | |3 online |2 Crossref |b Society for Neuroscience |c 2012-11-28 |
264 | _ | 1 | |3 print |2 Crossref |b Society for Neuroscience |c 2012-11-28 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1586874853_30145 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Alzheimer's disease (AD) is characterized by the extracellular deposition of amyloid-β (Aβ), neurofibrillary tangle formation, and a microglial-driven inflammatory response. Chronic inflammatory activation compromises microglial clearance functions. Because peroxisome proliferator-activated receptor γ (PPARγ) agonists suppress inflammatory gene expression, we tested whether activation of PPARγ would also result in improved microglial Aβ phagocytosis. The PPARγ agonist pioglitazone and a novel selective PPARα/γ modulator, DSP-8658, currently in clinical development for the treatment of type 2 diabetes, enhanced the microglial uptake of Aβ in a PPARγ-dependent manner. This PPARγ-stimulated increase of Aβ phagocytosis was mediated by the upregulation of scavenger receptor CD36 expression. In addition, combined treatment with agonists for the heterodimeric binding partners of PPARγ, the retinoid X receptors (RXRs), showed additive enhancement of the Aβ uptake that was mediated by RXRα activation. Evaluation of DSP-8658 in the amyloid precursor protein/presenilin 1 mouse model confirmed an increased microglial Aβ phagocytosis in vivo, which subsequently resulted in a reduction of cortical and hippocampal Aβ levels. Furthermore, DSP-8658-treated mice showed improved spatial memory performance. Therefore, stimulation of microglial clearance by simultaneous activation of the PPARγ/RXRα heterodimer may prove beneficial in prevention of AD. |
536 | _ | _ | |a 344 - Clinical and Health Care Research (POF3-344) |0 G:(DE-HGF)POF3-344 |c POF3-344 |f POF III |x 0 |
542 | _ | _ | |i 2013-05-28 |2 Crossref |u https://creativecommons.org/licenses/by-nc-sa/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
650 | _ | 7 | |a Amyloid beta-Protein Precursor |2 NLM Chemicals |
650 | _ | 7 | |a Hypoglycemic Agents |2 NLM Chemicals |
650 | _ | 7 | |a PPAR gamma |2 NLM Chemicals |
650 | _ | 7 | |a Presenilin-1 |2 NLM Chemicals |
650 | _ | 7 | |a Thiazolidinediones |2 NLM Chemicals |
650 | _ | 7 | |a Pioglitazone |0 X4OV71U42S |2 NLM Chemicals |
650 | _ | 2 | |a Alzheimer Disease: drug therapy |2 MeSH |
650 | _ | 2 | |a Alzheimer Disease: metabolism |2 MeSH |
650 | _ | 2 | |a Alzheimer Disease: psychology |2 MeSH |
650 | _ | 2 | |a Amyloid beta-Protein Precursor: genetics |2 MeSH |
650 | _ | 2 | |a Amyloid beta-Protein Precursor: metabolism |2 MeSH |
650 | _ | 2 | |a Animals |2 MeSH |
650 | _ | 2 | |a Behavior, Animal: drug effects |2 MeSH |
650 | _ | 2 | |a Behavior, Animal: physiology |2 MeSH |
650 | _ | 2 | |a Brain: drug effects |2 MeSH |
650 | _ | 2 | |a Brain: metabolism |2 MeSH |
650 | _ | 2 | |a Cognition: drug effects |2 MeSH |
650 | _ | 2 | |a Cognition: physiology |2 MeSH |
650 | _ | 2 | |a Disease Models, Animal |2 MeSH |
650 | _ | 2 | |a Hypoglycemic Agents: pharmacology |2 MeSH |
650 | _ | 2 | |a Hypoglycemic Agents: therapeutic use |2 MeSH |
650 | _ | 2 | |a Maze Learning: drug effects |2 MeSH |
650 | _ | 2 | |a Maze Learning: physiology |2 MeSH |
650 | _ | 2 | |a Mice |2 MeSH |
650 | _ | 2 | |a Microglia: drug effects |2 MeSH |
650 | _ | 2 | |a Microglia: metabolism |2 MeSH |
650 | _ | 2 | |a PPAR gamma: agonists |2 MeSH |
650 | _ | 2 | |a Phagocytosis: drug effects |2 MeSH |
650 | _ | 2 | |a Phagocytosis: physiology |2 MeSH |
650 | _ | 2 | |a Pioglitazone |2 MeSH |
650 | _ | 2 | |a Presenilin-1: genetics |2 MeSH |
650 | _ | 2 | |a Presenilin-1: metabolism |2 MeSH |
650 | _ | 2 | |a Thiazolidinediones: pharmacology |2 MeSH |
650 | _ | 2 | |a Thiazolidinediones: therapeutic use |2 MeSH |
700 | 1 | _ | |a Ishikawa, Taizo |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Griep, Angelika |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Axt, Daisy |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Kummer, Markus P |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Heneka, Michael T |0 P:(DE-2719)2000008 |b 5 |e Last author |
773 | 1 | 8 | |a 10.1523/jneurosci.1569-12.2012 |b Society for Neuroscience |d 2012-11-28 |n 48 |p 17321-17331 |3 journal-article |2 Crossref |t The Journal of Neuroscience |v 32 |y 2012 |x 0270-6474 |
773 | _ | _ | |a 10.1523/JNEUROSCI.1569-12.2012 |g Vol. 32, no. 48, p. 17321 - 17331 |0 PERI:(DE-600)1475274-8 |n 48 |q 32:48<17321 - 17331 |p 17321-17331 |t The journal of neuroscience |v 32 |y 2012 |x 0270-6474 |
856 | 7 | _ | |2 Pubmed Central |u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6621845 |
909 | C | O | |p VDB |o oai:pub.dzne.de:136710 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 5 |6 P:(DE-2719)2000008 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Gesundheit |l Erkrankungen des Nervensystems |1 G:(DE-HGF)POF3-340 |0 G:(DE-HGF)POF3-344 |2 G:(DE-HGF)POF3-300 |v Clinical and Health Care Research |x 0 |
914 | 1 | _ | |y 2012 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J NEUROSCI : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J NEUROSCI : 2017 |
920 | 1 | _ | |0 I:(DE-2719)999999 |k Pre 2020 |l DZNE before 2020 |x 0 |
920 | 1 | _ | |0 I:(DE-2719)1011303 |k AG Heneka2 |l Neuroinflammation, Biomarker |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-2719)999999 |
980 | _ | _ | |a I:(DE-2719)1011303 |
980 | _ | _ | |a UNRESTRICTED |
999 | C | 5 | |a 10.1523/JNEUROSCI.23-07-02665.2003 |9 -- missing cx lookup -- |1 Bamberger |p 2665 - |2 Crossref |t J Neurosci |v 23 |y 2003 |
999 | C | 5 | |a 10.1523/JNEUROSCI.4814-07.2008 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1186/1742-2094-3-27 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1523/JNEUROSCI.20-02-00558.2000 |9 -- missing cx lookup -- |1 Combs |p 558 - |2 Crossref |t J Neurosci |v 20 |y 2000 |
999 | C | 5 | |a 10.1016/S0002-9440(10)64354-4 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1217697 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1084/jem.20021546 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nm1555 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1186/1742-2094-7-61 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1523/JNEUROSCI.4822-05.2006 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nn1997 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.bbalip.2007.04.016 |9 -- missing cx lookup -- |1 Heneka |p 1031 - |2 Crossref |t Biochim Biophys Acta |v 1771 |y 2007 |
999 | C | 5 | |a 10.1016/S0165-5728(99)00192-7 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1093/brain/awh452 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1073/pnas.0909586107 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/s00702-010-0438-z |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1523/JNEUROSCI.0616-08.2008 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1056/NEJMoa010178 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1111/j.1471-4159.2009.06420.x |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/S1389-0344(01)00067-3 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/34184 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/s00702-010-0433-4 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1074/jbc.272.6.3406 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.neuron.2009.08.039 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 Maeshiba |y 1997 |2 Crossref |o Maeshiba 1997 |
999 | C | 5 | |a 10.1126/science.1197623 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1212/WNL.47.2.425 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1111/j.1471-4159.2009.06111.x |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.immuni.2009.09.010 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/34178 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/S0197-0186(01)00040-7 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1212/WNL.48.3.626 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1523/JNEUROSCI.6546-10.2011 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/S0092-8674(00)81575-5 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1186/1742-2094-2-24 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nm1781 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/j.1460-2075.1992.tb05072.x |9 -- missing cx lookup -- |1 Tugwood |p 433 - |2 Crossref |t EMBO J |v 11 |y 1992 |
999 | C | 5 | |a 10.1523/JNEUROSCI.23-20-07504.2003 |9 -- missing cx lookup -- |1 Yan |p 7504 - |2 Crossref |t J Neurosci |v 23 |y 2003 |
999 | C | 5 | |a 10.1161/STROKEAHA.108.533158 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|