001     136710
005     20240321220125.0
024 7 _ |a 10.1523/JNEUROSCI.1569-12.2012
|2 doi
024 7 _ |a pmid:23197723
|2 pmid
024 7 _ |a pmc:PMC6621845
|2 pmc
024 7 _ |a 0270-6474
|2 ISSN
024 7 _ |a 1529-2401
|2 ISSN
024 7 _ |a altmetric:4243638
|2 altmetric
037 _ _ |a DZNE-2020-03032
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Yamanaka, Mitsugu
|0 P:(DE-HGF)0
|b 0
245 _ _ |a PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice.
260 _ _ |a Washington, DC
|c 2012
|b Soc.57413
264 _ 1 |3 online
|2 Crossref
|b Society for Neuroscience
|c 2012-11-28
264 _ 1 |3 print
|2 Crossref
|b Society for Neuroscience
|c 2012-11-28
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1586874853_30145
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Alzheimer's disease (AD) is characterized by the extracellular deposition of amyloid-β (Aβ), neurofibrillary tangle formation, and a microglial-driven inflammatory response. Chronic inflammatory activation compromises microglial clearance functions. Because peroxisome proliferator-activated receptor γ (PPARγ) agonists suppress inflammatory gene expression, we tested whether activation of PPARγ would also result in improved microglial Aβ phagocytosis. The PPARγ agonist pioglitazone and a novel selective PPARα/γ modulator, DSP-8658, currently in clinical development for the treatment of type 2 diabetes, enhanced the microglial uptake of Aβ in a PPARγ-dependent manner. This PPARγ-stimulated increase of Aβ phagocytosis was mediated by the upregulation of scavenger receptor CD36 expression. In addition, combined treatment with agonists for the heterodimeric binding partners of PPARγ, the retinoid X receptors (RXRs), showed additive enhancement of the Aβ uptake that was mediated by RXRα activation. Evaluation of DSP-8658 in the amyloid precursor protein/presenilin 1 mouse model confirmed an increased microglial Aβ phagocytosis in vivo, which subsequently resulted in a reduction of cortical and hippocampal Aβ levels. Furthermore, DSP-8658-treated mice showed improved spatial memory performance. Therefore, stimulation of microglial clearance by simultaneous activation of the PPARγ/RXRα heterodimer may prove beneficial in prevention of AD.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
542 _ _ |i 2013-05-28
|2 Crossref
|u https://creativecommons.org/licenses/by-nc-sa/4.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Amyloid beta-Protein Precursor
|2 NLM Chemicals
650 _ 7 |a Hypoglycemic Agents
|2 NLM Chemicals
650 _ 7 |a PPAR gamma
|2 NLM Chemicals
650 _ 7 |a Presenilin-1
|2 NLM Chemicals
650 _ 7 |a Thiazolidinediones
|2 NLM Chemicals
650 _ 7 |a Pioglitazone
|0 X4OV71U42S
|2 NLM Chemicals
650 _ 2 |a Alzheimer Disease: drug therapy
|2 MeSH
650 _ 2 |a Alzheimer Disease: metabolism
|2 MeSH
650 _ 2 |a Alzheimer Disease: psychology
|2 MeSH
650 _ 2 |a Amyloid beta-Protein Precursor: genetics
|2 MeSH
650 _ 2 |a Amyloid beta-Protein Precursor: metabolism
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Behavior, Animal: drug effects
|2 MeSH
650 _ 2 |a Behavior, Animal: physiology
|2 MeSH
650 _ 2 |a Brain: drug effects
|2 MeSH
650 _ 2 |a Brain: metabolism
|2 MeSH
650 _ 2 |a Cognition: drug effects
|2 MeSH
650 _ 2 |a Cognition: physiology
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Hypoglycemic Agents: pharmacology
|2 MeSH
650 _ 2 |a Hypoglycemic Agents: therapeutic use
|2 MeSH
650 _ 2 |a Maze Learning: drug effects
|2 MeSH
650 _ 2 |a Maze Learning: physiology
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Microglia: drug effects
|2 MeSH
650 _ 2 |a Microglia: metabolism
|2 MeSH
650 _ 2 |a PPAR gamma: agonists
|2 MeSH
650 _ 2 |a Phagocytosis: drug effects
|2 MeSH
650 _ 2 |a Phagocytosis: physiology
|2 MeSH
650 _ 2 |a Pioglitazone
|2 MeSH
650 _ 2 |a Presenilin-1: genetics
|2 MeSH
650 _ 2 |a Presenilin-1: metabolism
|2 MeSH
650 _ 2 |a Thiazolidinediones: pharmacology
|2 MeSH
650 _ 2 |a Thiazolidinediones: therapeutic use
|2 MeSH
700 1 _ |a Ishikawa, Taizo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Griep, Angelika
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Axt, Daisy
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kummer, Markus P
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Heneka, Michael T
|0 P:(DE-2719)2000008
|b 5
|e Last author
773 1 8 |a 10.1523/jneurosci.1569-12.2012
|b Society for Neuroscience
|d 2012-11-28
|n 48
|p 17321-17331
|3 journal-article
|2 Crossref
|t The Journal of Neuroscience
|v 32
|y 2012
|x 0270-6474
773 _ _ |a 10.1523/JNEUROSCI.1569-12.2012
|g Vol. 32, no. 48, p. 17321 - 17331
|0 PERI:(DE-600)1475274-8
|n 48
|q 32:48<17321 - 17331
|p 17321-17331
|t The journal of neuroscience
|v 32
|y 2012
|x 0270-6474
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6621845
909 C O |p VDB
|o oai:pub.dzne.de:136710
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2000008
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|2 G:(DE-HGF)POF3-300
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2012
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROSCI : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NEUROSCI : 2017
920 1 _ |0 I:(DE-2719)999999
|k Pre 2020
|l DZNE before 2020
|x 0
920 1 _ |0 I:(DE-2719)1011303
|k AG Heneka2
|l Neuroinflammation, Biomarker
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)999999
980 _ _ |a I:(DE-2719)1011303
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1523/JNEUROSCI.23-07-02665.2003
|9 -- missing cx lookup --
|1 Bamberger
|p 2665 -
|2 Crossref
|t J Neurosci
|v 23
|y 2003
999 C 5 |a 10.1523/JNEUROSCI.4814-07.2008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1186/1742-2094-3-27
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.20-02-00558.2000
|9 -- missing cx lookup --
|1 Combs
|p 558 -
|2 Crossref
|t J Neurosci
|v 20
|y 2000
999 C 5 |a 10.1016/S0002-9440(10)64354-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1217697
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1084/jem.20021546
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nm1555
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1186/1742-2094-7-61
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.4822-05.2006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nn1997
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.bbalip.2007.04.016
|9 -- missing cx lookup --
|1 Heneka
|p 1031 -
|2 Crossref
|t Biochim Biophys Acta
|v 1771
|y 2007
999 C 5 |a 10.1016/S0165-5728(99)00192-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1093/brain/awh452
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.0909586107
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00702-010-0438-z
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.0616-08.2008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1056/NEJMoa010178
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1111/j.1471-4159.2009.06420.x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S1389-0344(01)00067-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/34184
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00702-010-0433-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1074/jbc.272.6.3406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.neuron.2009.08.039
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Maeshiba
|y 1997
|2 Crossref
|o Maeshiba 1997
999 C 5 |a 10.1126/science.1197623
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1212/WNL.47.2.425
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1111/j.1471-4159.2009.06111.x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.immuni.2009.09.010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/34178
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0197-0186(01)00040-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1212/WNL.48.3.626
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.6546-10.2011
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0092-8674(00)81575-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1186/1742-2094-2-24
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nm1781
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/j.1460-2075.1992.tb05072.x
|9 -- missing cx lookup --
|1 Tugwood
|p 433 -
|2 Crossref
|t EMBO J
|v 11
|y 1992
999 C 5 |a 10.1523/JNEUROSCI.23-20-07504.2003
|9 -- missing cx lookup --
|1 Yan
|p 7504 -
|2 Crossref
|t J Neurosci
|v 23
|y 2003
999 C 5 |a 10.1161/STROKEAHA.108.533158
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21