001     136887
005     20240321220143.0
024 7 _ |a 10.1002/pmic.201200582
|2 doi
024 7 _ |a pmid:23457027
|2 pmid
037 _ _ |a DZNE-2020-03209
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Hogl, Sebastian
|0 P:(DE-2719)9000409
|b 0
|e First author
245 _ _ |a Label-free quantitative analysis of the membrane proteome of Bace1 protease knock-out zebrafish brains.
260 _ _ |a Weinheim
|c 2013
|b Wiley VCH69157
264 _ 1 |3 online
|2 Crossref
|b Wiley
|c 2013-04-02
264 _ 1 |3 print
|2 Crossref
|b Wiley
|c 2013-05-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1586875959_30146
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The aspartyl protease BACE1 cleaves neuregulin 1 and is involved in myelination and is a candidate drug target for Alzheimer's disease, where it acts as the β-secretase cleaving the amyloid precursor protein. However, little is known about other substrates in vivo. Here, we provide a proteomic workflow for BACE1 substrate identification from whole brains, combining filter-aided sample preparation, strong-anion exchange fractionation, and label-free quantification. We used bace1-deficient zebrafish and quantified differences in protein levels between wild-type and bace1 -/- zebrafish brains. Over 4500 proteins were identified with at least two unique peptides and quantified in both wild-type and bace1 -/- zebrafish brains. The majority of zebrafish membrane proteins did not show altered protein levels, indicating that Bace1 has a restricted substrate specificity. Twenty-four membrane proteins accumulated in the bace1 -/- brains and thus represent candidate Bace1 substrates. They include several known BACE1 substrates, such as the zebrafish homologs of amyloid precursor protein and the cell adhesion protein L1, which validate the proteomic workflow. Additionally, several candidate substrates with a function in neurite outgrowth and axon guidance, such as plexin A3 and glypican-1 were identified, pointing to a function of Bace1 in neurodevelopment. Taken together, our study provides the first proteomic analysis of knock-out zebrafish tissue and demonstrates that combining gene knock-out models in zebrafish with quantitative proteomics is a powerful approach to address biomedical questions.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
542 _ _ |i 2013-04-02
|2 Crossref
|u http://doi.wiley.com/10.1002/tdm_license_1.1
542 _ _ |i 2013-04-02
|2 Crossref
|u http://onlinelibrary.wiley.com/termsAndConditions#vor
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Amyloid beta-Protein Precursor
|2 NLM Chemicals
650 _ 7 |a Glypicans
|2 NLM Chemicals
650 _ 7 |a Membrane Proteins
|2 NLM Chemicals
650 _ 7 |a Plxna3 protein, zebrafish
|2 NLM Chemicals
650 _ 7 |a Proteome
|2 NLM Chemicals
650 _ 7 |a Receptors, Cell Surface
|2 NLM Chemicals
650 _ 7 |a Zebrafish Proteins
|2 NLM Chemicals
650 _ 7 |a Aspartic Acid Endopeptidases
|0 EC 3.4.23.-
|2 NLM Chemicals
650 _ 2 |a Amyloid beta-Protein Precursor: genetics
|2 MeSH
650 _ 2 |a Amyloid beta-Protein Precursor: metabolism
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Animals, Genetically Modified
|2 MeSH
650 _ 2 |a Aspartic Acid Endopeptidases: genetics
|2 MeSH
650 _ 2 |a Aspartic Acid Endopeptidases: metabolism
|2 MeSH
650 _ 2 |a Brain: metabolism
|2 MeSH
650 _ 2 |a Chemical Fractionation: methods
|2 MeSH
650 _ 2 |a Glypicans: metabolism
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Membrane Proteins: analysis
|2 MeSH
650 _ 2 |a Membrane Proteins: genetics
|2 MeSH
650 _ 2 |a Membrane Proteins: metabolism
|2 MeSH
650 _ 2 |a Proteome: genetics
|2 MeSH
650 _ 2 |a Proteome: metabolism
|2 MeSH
650 _ 2 |a Receptors, Cell Surface: metabolism
|2 MeSH
650 _ 2 |a Tandem Mass Spectrometry
|2 MeSH
650 _ 2 |a Workflow
|2 MeSH
650 _ 2 |a Zebrafish: genetics
|2 MeSH
650 _ 2 |a Zebrafish: metabolism
|2 MeSH
650 _ 2 |a Zebrafish Proteins: analysis
|2 MeSH
650 _ 2 |a Zebrafish Proteins: genetics
|2 MeSH
650 _ 2 |a Zebrafish Proteins: metabolism
|2 MeSH
700 1 _ |a van Bebber, Frauke
|0 P:(DE-2719)9000319
|b 1
700 1 _ |a Dislich, Bastian
|0 P:(DE-2719)9000408
|b 2
700 1 _ |a Kuhn, Peer-Hendrik
|0 P:(DE-2719)2810327
|b 3
700 1 _ |a Haass, Christian
|0 P:(DE-2719)2202037
|b 4
700 1 _ |a Schmid, Bettina
|0 P:(DE-2719)2241638
|b 5
700 1 _ |a Lichtenthaler, Stefan F
|0 P:(DE-2719)2181459
|b 6
|e Last author
773 1 8 |a 10.1002/pmic.201200582
|b : Wiley, 2013-04-02
|n 9
|p 1519-1527
|3 journal-article
|2 Crossref
|t PROTEOMICS
|v 13
|y 2013
|x 1615-9853
773 _ _ |a 10.1002/pmic.201200582
|g Vol. 13, no. 9, p. 1519 - 1527
|0 PERI:(DE-600)2253166-X
|n 9
|q 13:9<1519 - 1527
|p 1519-1527
|t Practical proteomics
|v 13
|y 2013
|x 1615-9853
909 C O |p VDB
|o oai:pub.dzne.de:136887
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9000409
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9000319
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9000408
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2810327
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2202037
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2241638
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2181459
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|2 G:(DE-HGF)POF3-300
|v Disease Mechanisms and Model Systems
|x 0
914 1 _ |y 2013
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PROTEOMICS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-2719)1110006
|k AG Lichtenthaler
|l Neuroproteomics
|x 0
920 1 _ |0 I:(DE-2719)1110007
|k AG Haass old
|l ALS, FTLD and Zebrafish models
|x 1
920 1 _ |0 I:(DE-2719)1140002
|k Zebrafish Models ; AG Schmid ; AG Schmid München
|l Zebrafish Models
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1110006
980 _ _ |a I:(DE-2719)5000015
980 _ _ |a I:(DE-2719)1140002
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1111/j.1471-4159.2011.07512.x
|9 -- missing cx lookup --
|2 Crossref
|o 10.1111/j.1471-4159.2011.07512.x
999 C 5 |a 10.3389/fphys.2012.00008
|9 -- missing cx lookup --
|2 Crossref
|o 10.3389/fphys.2012.00008
999 C 5 |a 10.1038/nn1797
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nn1797
999 C 5 |a 10.1126/science.1132341
|9 -- missing cx lookup --
|2 Crossref
|o 10.1126/science.1132341
999 C 5 |a 10.1038/emboj.2012.173
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/emboj.2012.173
999 C 5 |a 10.1074/jbc.M112.377465
|9 -- missing cx lookup --
|2 Crossref
|o 10.1074/jbc.M112.377465
999 C 5 |a 10.1371/journal.pone.0021337
|9 -- missing cx lookup --
|2 Crossref
|o 10.1371/journal.pone.0021337
999 C 5 |a 10.1074/jbc.M310001200
|9 -- missing cx lookup --
|2 Crossref
|o 10.1074/jbc.M310001200
999 C 5 |a 10.1016/j.mcn.2003.12.013
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.mcn.2003.12.013
999 C 5 |a 10.1074/jbc.M112.415505
|9 -- missing cx lookup --
|2 Crossref
|o 10.1074/jbc.M112.415505
999 C 5 |a 10.1002/pmic.200900609
|9 -- missing cx lookup --
|2 Crossref
|o 10.1002/pmic.200900609
999 C 5 |a 10.2147/NDT.S2056
|9 -- missing cx lookup --
|2 Crossref
|o 10.2147/NDT.S2056
999 C 5 |a 10.1074/mcp.M800081-MCP200
|9 -- missing cx lookup --
|2 Crossref
|o 10.1074/mcp.M800081-MCP200
999 C 5 |a 10.1089/zeb.2009.0591
|9 -- missing cx lookup --
|2 Crossref
|o 10.1089/zeb.2009.0591
999 C 5 |a 10.1021/pr060367o
|9 -- missing cx lookup --
|2 Crossref
|o 10.1021/pr060367o
999 C 5 |a 10.1016/j.jprot.2011.08.008
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.jprot.2011.08.008
999 C 5 |a 10.1126/science.286.5440.735
|9 -- missing cx lookup --
|2 Crossref
|o 10.1126/science.286.5440.735
999 C 5 |a 10.1016/S0960-9822(00)00048-8
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/S0960-9822(00)00048-8
999 C 5 |a 10.1111/jnc.12198
|9 -- missing cx lookup --
|2 Crossref
|o 10.1111/jnc.12198
999 C 5 |a 10.1038/nmeth.1322
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nmeth.1322
999 C 5 |a 10.1021/pr900748n
|9 -- missing cx lookup --
|2 Crossref
|o 10.1021/pr900748n
999 C 5 |a 10.1021/ac026117i
|9 -- missing cx lookup --
|2 Crossref
|o 10.1021/ac026117i
999 C 5 |a 10.1038/nbt.1511
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nbt.1511
999 C 5 |a 10.1021/pr101065j
|9 -- missing cx lookup --
|2 Crossref
|o 10.1021/pr101065j
999 C 5 |a 10.1038/nature10098
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nature10098
999 C 5 |a 10.1038/35041097
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/35041097
999 C 5 |a 10.1016/j.ijdevneu.2005.11.003
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.ijdevneu.2005.11.003
999 C 5 |y 1995
|2 Crossref
|o Benjamini 1995
999 C 5 |y 2012
|2 Crossref
|o Colombo 2012
999 C 5 |a 10.1074/mcp.M110.004374
|9 -- missing cx lookup --
|2 Crossref
|o 10.1074/mcp.M110.004374
999 C 5 |a 10.1016/j.bbrc.2010.02.069
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.bbrc.2010.02.069
999 C 5 |a 10.1371/journal.pone.0008477
|9 -- missing cx lookup --
|2 Crossref
|o 10.1371/journal.pone.0008477
999 C 5 |a 10.1002/pmic.201100576
|9 -- missing cx lookup --
|2 Crossref
|o 10.1002/pmic.201100576
999 C 5 |a 10.1038/nmeth.2031
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nmeth.2031
999 C 5 |a 10.1074/mcp.M111.014050
|9 -- missing cx lookup --
|2 Crossref
|o 10.1074/mcp.M111.014050
999 C 5 |a 10.1016/0378-1119(92)90188-U
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/0378-1119(92)90188-U
999 C 5 |a 10.1002/jnr.10590
|9 -- missing cx lookup --
|2 Crossref
|o 10.1002/jnr.10590
999 C 5 |a 10.1111/j.1749-6632.1991.tb25916.x
|9 -- missing cx lookup --
|2 Crossref
|o 10.1111/j.1749-6632.1991.tb25916.x
999 C 5 |a 10.1038/nmeth.1446
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nmeth.1446
999 C 5 |a 10.1021/bi802163p
|9 -- missing cx lookup --
|2 Crossref
|o 10.1021/bi802163p
999 C 5 |a 10.1100/tsw.2006.202
|9 -- missing cx lookup --
|2 Crossref
|o 10.1100/tsw.2006.202
999 C 5 |y 2012
|2 Crossref
|t Jasper's Basic Mechanisms of the Epilepsies
|o Tanaka Jasper's Basic Mechanisms of the Epilepsies 2012
999 C 5 |a 10.1242/dev.007112
|9 -- missing cx lookup --
|2 Crossref
|o 10.1242/dev.007112
999 C 5 |a 10.1038/ng1197-346
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/ng1197-346
999 C 5 |a 10.1186/1750-1326-6-88
|9 -- missing cx lookup --
|2 Crossref
|o 10.1186/1750-1326-6-88
999 C 5 |a 10.1038/srep00231
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/srep00231


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21