001     137497
005     20240321220248.0
024 7 _ |a 10.1016/j.neuron.2014.07.004
|2 doi
024 7 _ |a pmid:25066086
|2 pmid
024 7 _ |a 0896-6273
|2 ISSN
024 7 _ |a 1097-4199
|2 ISSN
024 7 _ |a altmetric:2536040
|2 altmetric
037 _ _ |a DZNE-2020-03819
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Khodosevich, Konstantin
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Coexpressed auxiliary subunits exhibit distinct modulatory profiles on AMPA receptor function.
260 _ _ |a New York, NY
|c 2014
|b Elsevier
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2014-08-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710768094_18976
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Gating properties and surface trafficking of AMPA receptors (AMPARs) are modulated by auxiliary subunits. Here we studied the function of coexpressed auxiliary subunits belonging to two different classes. We focused on TARP γ-8 and CKAMP44 in dentate gyrus (DG) granule cells, since both subunits are highly expressed in this cell type. TARP γ-8 and CKAMP44 decrease the rate of deactivation but have an opposing influence on receptor desensitization, which accounts for their differential modulation of synaptic short-term plasticity. Furthermore, long-term plasticity (LTP) requires TARP γ-8 but not CKAMP44. The coexpression of both auxiliary subunits is necessary for the efficient targeting of AMPARs to the cell surface of DG granule cells. Finally, electrophysiological and biochemical evidence support the notion that CKAMP44 and TARP γ-8 can be contained in the same AMPAR complex.
536 _ _ |a 341 - Molecular Signaling (POF3-341)
|0 G:(DE-HGF)POF3-341
|c POF3-341
|f POF III
|x 0
542 _ _ |i 2014-08-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2015-08-06
|2 Crossref
|u https://www.elsevier.com/open-access/userlicense/1.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a CKAMP44 protein, mouse
|2 NLM Chemicals
650 _ 7 |a Calcium Channels
|2 NLM Chemicals
650 _ 7 |a Membrane Proteins
|2 NLM Chemicals
650 _ 7 |a Nerve Tissue Proteins
|2 NLM Chemicals
650 _ 7 |a Receptors, AMPA
|2 NLM Chemicals
650 _ 7 |a TARP gamma-8 protein, mouse
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Calcium Channels: metabolism
|2 MeSH
650 _ 2 |a Dentate Gyrus: metabolism
|2 MeSH
650 _ 2 |a Excitatory Postsynaptic Potentials: physiology
|2 MeSH
650 _ 2 |a Gene Knockout Techniques
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Membrane Proteins: metabolism
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Nerve Tissue Proteins: metabolism
|2 MeSH
650 _ 2 |a Neuronal Plasticity: genetics
|2 MeSH
650 _ 2 |a Neuronal Plasticity: physiology
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Neurons: physiology
|2 MeSH
650 _ 2 |a Patch-Clamp Techniques: methods
|2 MeSH
650 _ 2 |a Receptors, AMPA: genetics
|2 MeSH
650 _ 2 |a Receptors, AMPA: metabolism
|2 MeSH
650 _ 2 |a Synapses: physiology
|2 MeSH
650 _ 2 |a Synaptic Transmission: physiology
|2 MeSH
700 1 _ |a Jacobi, Eric
|0 P:(DE-2719)2810598
|b 1
700 1 _ |a Farrow, Paul
|0 P:(DE-2719)2810462
|b 2
700 1 _ |a Schulmann, Anton
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rusu, Alexandru
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zhang, Ling
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sprengel, Rolf
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Monyer, Hannah
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Engelhardt, Jakob
|0 P:(DE-2719)2810460
|b 8
|e Last author
773 1 8 |a 10.1016/j.neuron.2014.07.004
|b : Elsevier BV, 2014-08-01
|n 3
|p 601-615
|3 journal-article
|2 Crossref
|t Neuron
|v 83
|y 2014
|x 0896-6273
773 _ _ |a 10.1016/j.neuron.2014.07.004
|g Vol. 83, no. 3, p. 601 - 615
|0 PERI:(DE-600)2001944-0
|n 3
|q 83:3<601 - 615
|p 601-615
|t Neuron
|v 83
|y 2014
|x 0896-6273
856 4 _ |u https://pub.dzne.de/record/137497/files/DZNE-2020-03819_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/137497/files/DZNE-2020-03819_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:137497
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2810598
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2810462
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2810460
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-341
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Molecular Signaling
|x 0
914 1 _ |y 2014
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURON : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NEURON : 2017
920 1 _ |0 I:(DE-2719)1013023
|k AG Engelhardt
|l Synaptic Signalling and Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1013023
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21