001     137692
005     20240321220309.0
024 7 _ |a 10.1016/j.ajhg.2014.10.017
|2 doi
024 7 _ |a pmid:25434004
|2 pmid
024 7 _ |a pmc:PMC4259976
|2 pmc
024 7 _ |a 0002-9297
|2 ISSN
024 7 _ |a 1537-6605
|2 ISSN
024 7 _ |a altmetric:2927230
|2 altmetric
037 _ _ |a DZNE-2020-04014
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Kopajtich, Robert
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy.
260 _ _ |a New York, NY
|c 2014
|b Elsevier
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2014-12-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710759773_18973
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Respiratory chain deficiencies exhibit a wide variety of clinical phenotypes resulting from defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mtDNA or mutations in nuclear genes coding for mitochondrial proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial physiology. By whole-exome and candidate gene sequencing, we identified 11 individuals from 9 families carrying compound heterozygous or homozygous mutations in GTPBP3, encoding the mitochondrial GTP-binding protein 3. Affected individuals from eight out of nine families presented with combined respiratory chain complex deficiencies in skeletal muscle. Mutations in GTPBP3 are associated with a severe mitochondrial translation defect, consistent with the predicted function of the protein in catalyzing the formation of 5-taurinomethyluridine (τm(5)U) in the anticodon wobble position of five mitochondrial tRNAs. All case subjects presented with lactic acidosis and nine developed hypertrophic cardiomyopathy. In contrast to individuals with mutations in MTO1, the protein product of which is predicted to participate in the generation of the same modification, most individuals with GTPBP3 mutations developed neurological symptoms and MRI involvement of thalamus, putamen, and brainstem resembling Leigh syndrome. Our study of a mitochondrial translation disorder points toward the importance of posttranscriptional modification of mitochondrial tRNAs for proper mitochondrial function.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
542 _ _ |i 2014-12-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2014-11-17
|2 Crossref
|u http://creativecommons.org/licenses/by/3.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a RNA, Transfer
|0 9014-25-9
|2 NLM Chemicals
650 _ 7 |a GTP-Binding Proteins
|0 EC 3.6.1.-
|2 NLM Chemicals
650 _ 7 |a GTPBP3 protein, human
|0 EC 3.6.1.-
|2 NLM Chemicals
650 _ 2 |a Acidosis, Lactic: genetics
|2 MeSH
650 _ 2 |a Acidosis, Lactic: physiopathology
|2 MeSH
650 _ 2 |a Amino Acid Sequence
|2 MeSH
650 _ 2 |a Brain: pathology
|2 MeSH
650 _ 2 |a Brain Diseases: genetics
|2 MeSH
650 _ 2 |a Brain Diseases: physiopathology
|2 MeSH
650 _ 2 |a Cardiomyopathy, Hypertrophic: genetics
|2 MeSH
650 _ 2 |a Cardiomyopathy, Hypertrophic: physiopathology
|2 MeSH
650 _ 2 |a Cell Line
|2 MeSH
650 _ 2 |a Child
|2 MeSH
650 _ 2 |a Child, Preschool
|2 MeSH
650 _ 2 |a Consanguinity
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Fibroblasts
|2 MeSH
650 _ 2 |a GTP-Binding Proteins: genetics
|2 MeSH
650 _ 2 |a GTP-Binding Proteins: metabolism
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Infant
|2 MeSH
650 _ 2 |a Infant, Newborn
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Molecular Sequence Data
|2 MeSH
650 _ 2 |a Mutation
|2 MeSH
650 _ 2 |a Pedigree
|2 MeSH
650 _ 2 |a Protein Biosynthesis
|2 MeSH
650 _ 2 |a Protein Processing, Post-Translational
|2 MeSH
650 _ 2 |a RNA Interference
|2 MeSH
650 _ 2 |a RNA, Transfer: genetics
|2 MeSH
650 _ 2 |a RNA, Transfer: metabolism
|2 MeSH
650 _ 2 |a Sequence Alignment
|2 MeSH
700 1 _ |a Nicholls, Thomas J
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rorbach, Joanna
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Metodiev, Metodi D
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Freisinger, Peter
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mandel, Hanna
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Vanlander, Arnaud
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ghezzi, Daniele
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Carrozzo, Rosalba
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Taylor, Robert W
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Marquard, Klaus
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Murayama, Kei
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Wieland, Thomas
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Schwarzmayr, Thomas
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Mayr, Johannes A
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Pearce, Sarah F
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Powell, Christopher A
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Saada, Ann
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Ohtake, Akira
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Invernizzi, Federica
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Lamantea, Eleonora
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Sommerville, Ewen W
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Pyle, Angela
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Chinnery, Patrick F
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Crushell, Ellen
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Okazaki, Yasushi
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Kohda, Masakazu
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Kishita, Yoshihito
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Tokuzawa, Yoshimi
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Assouline, Zahra
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Rio, Marlène
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Feillet, François
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Mousson de Camaret, Bénédict
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Chretien, Dominique
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Munnich, Arnold
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Menten, Björn
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Sante, Tom
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Smet, Joél
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Régal, Luc
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Lorber, Abraham
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Khoury, Asaad
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Zeviani, Massimo
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Strom, Tim M
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Meitinger, Thomas
|0 P:(DE-2719)9000207
|b 43
|u dzne
700 1 _ |a Bertini, Enrico S
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Van Coster, Rudy
|0 P:(DE-HGF)0
|b 45
700 1 _ |a Klopstock, Thomas
|0 P:(DE-2719)2810704
|b 46
|u dzne
700 1 _ |a Rötig, Agnès
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Haack, Tobias B
|0 P:(DE-HGF)0
|b 48
700 1 _ |a Minczuk, Michal
|0 P:(DE-HGF)0
|b 49
|e Corresponding author
700 1 _ |a Prokisch, Holger
|0 P:(DE-HGF)0
|b 50
773 1 8 |a 10.1016/j.ajhg.2014.10.017
|b : Elsevier BV, 2014-12-01
|n 6
|p 708-720
|3 journal-article
|2 Crossref
|t The American Journal of Human Genetics
|v 95
|y 2014
|x 0002-9297
773 _ _ |a 10.1016/j.ajhg.2014.10.017
|g Vol. 95, no. 6, p. 708 - 720
|0 PERI:(DE-600)1473813-2
|n 6
|q 95:6<708 - 720
|p 708-720
|t The American journal of human genetics
|v 95
|y 2014
|x 0002-9297
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/137692/files/DZNE-2020-04014.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/137692/files/DZNE-2020-04014.pdf?subformat=pdfa
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259976
909 C O |o oai:pub.dzne.de:137692
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 43
|6 P:(DE-2719)9000207
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 46
|6 P:(DE-2719)2810704
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2014
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AM J HUM GENET : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b AM J HUM GENET : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-2719)1111016
|k AG Levin
|l Clinical Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1111016
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21