001     137841
005     20240722113336.0
024 7 _ |a 10.1093/brain/awu380
|2 doi
024 7 _ |a pmid:25558877
|2 pmid
024 7 _ |a pmc:PMC4408429
|2 pmc
024 7 _ |a 0006-8950
|2 ISSN
024 7 _ |a 1460-2156
|2 ISSN
024 7 _ |a altmetric:3039936
|2 altmetric
037 _ _ |a DZNE-2020-04163
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Weiss, Daniel
|0 P:(DE-2719)9000341
|b 0
|e First author
|u dzne
245 _ _ |a Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson's disease.
260 _ _ |a Oxford
|c 2015
|b Oxford Univ. Press
264 _ 1 |3 online
|2 Crossref
|b Oxford University Press (OUP)
|c 2015-01-02
264 _ 1 |3 print
|2 Crossref
|b Oxford University Press (OUP)
|c 2015-03-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721640795_12032
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson's disease. Here, we set out to address the motor network activity and synchronization in Parkinson's disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson's disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with 'stimulation on' compared to 'stimulation off' on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With 'stimulation on', interhemispheric cortico-cortical coherence in the beta band was significantly attenuated over the bilateral sensorimotor areas. Similarly, the global cortico-cortical phase synchronization was attenuated, and the topographic differentiation revealed stronger desynchronization over the (ipsilateral) right-hemispheric prefrontal, premotor and sensorimotor areas compared to 'stimulation off'. We further demonstrated that the cortico-cortical phase synchronization was largely dominated by genuine neuronal coupling. The clinical improvement with 'stimulation on' compared to 'stimulation off' could be predicted from this cortical decoupling with multiple regressions, and the reduction of synchronization over the right prefrontal area showed a linear univariate correlation with clinical improvement. Our study demonstrates wide-spread activity and synchronization modulations of the cortical motor network, and highlights subthalamic stimulation as a network-modulating therapy. Accordingly, subthalamic stimulation may release bilateral cortical computational resources by facilitating movement-related desynchronization. Moreover, the subthalamic nucleus is critical to balance inhibitory and facilitatory cortical players within the motor program.
536 _ _ |a 345 - Population Studies and Genetics (POF3-345)
|0 G:(DE-HGF)POF3-345
|c POF3-345
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Antiparkinson Agents
|2 NLM Chemicals
650 _ 7 |a Levodopa
|0 46627O600J
|2 NLM Chemicals
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Antiparkinson Agents: therapeutic use
|2 MeSH
650 _ 2 |a Cortical Synchronization: drug effects
|2 MeSH
650 _ 2 |a Cortical Synchronization: physiology
|2 MeSH
650 _ 2 |a Deep Brain Stimulation: methods
|2 MeSH
650 _ 2 |a Evoked Potentials, Motor: physiology
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Levodopa: therapeutic use
|2 MeSH
650 _ 2 |a Longitudinal Studies
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Motor Cortex: physiopathology
|2 MeSH
650 _ 2 |a Nerve Net: physiopathology
|2 MeSH
650 _ 2 |a Neural Pathways: physiopathology
|2 MeSH
650 _ 2 |a Parkinson Disease: pathology
|2 MeSH
650 _ 2 |a Parkinson Disease: therapy
|2 MeSH
650 _ 2 |a Psychomotor Performance: drug effects
|2 MeSH
650 _ 2 |a Subthalamus: physiology
|2 MeSH
650 _ 2 |a Time Factors
|2 MeSH
650 _ 2 |a Treatment Outcome
|2 MeSH
700 1 _ |a Klotz, Rosa
|0 P:(DE-2719)9000158
|b 1
|u dzne
700 1 _ |a Govindan, Rathinaswamy B
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Scholten, Marlieke
|0 P:(DE-2719)9000291
|b 3
|u dzne
700 1 _ |a Naros, Georgios
|b 4
700 1 _ |a Ramos-Murguialday, Ander
|b 5
700 1 _ |a Bunjes, Friedemann
|0 P:(DE-2719)9000039
|b 6
|u dzne
700 1 _ |a Meisner, Christoph
|b 7
700 1 _ |a Plewnia, Christian
|b 8
700 1 _ |a Krüger, Rejko
|0 P:(DE-2719)2811170
|b 9
|u dzne
700 1 _ |a Gharabaghi, Alireza
|b 10
773 1 8 |a 10.1093/brain/awu380
|b : Oxford University Press (OUP), 2015-01-02
|n 3
|p 679-693
|3 journal-article
|2 Crossref
|t Brain
|v 138
|y 2015
|x 1460-2156
773 _ _ |a 10.1093/brain/awu380
|g Vol. 138, no. Pt 3, p. 679 - 693
|0 PERI:(DE-600)1474117-9
|n 3
|q 138:Pt 3<679 - 693
|p 679-693
|t Brain
|v 138
|y 2015
|x 1460-2156
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408429
856 4 _ |u https://pub.dzne.de/record/137841/files/DZNE-2020-04163_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/137841/files/DZNE-2020-04163_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:137841
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9000341
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9000158
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9000291
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9000039
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2811170
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-345
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Population Studies and Genetics
|x 0
914 1 _ |y 2015
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b BRAIN : 2017
920 1 _ |0 I:(DE-2719)1210000
|k AG Gasser
|l Parkinson Genetics
|x 0
920 1 _ |0 I:(DE-2719)6000018
|k Tübingen common
|l Tübingen common
|x 1
920 1 _ |0 I:(DE-2719)5000057
|k Ext HIH
|l Ext Hertie-Institut für klinische Hirnforschung
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1210000
980 _ _ |a I:(DE-2719)6000018
980 _ _ |a I:(DE-2719)5000057
980 _ _ |a UNRESTRICTED
999 C 5 |9 -- missing cx lookup --
|a 10.1016/0166-2236(89)90074-X
|2 Crossref
|o 10.1016/0166-2236(89)90074-X
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nn1003
|2 Crossref
|o 10.1038/nn1003
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.4682-05.2006
|2 Crossref
|o 10.1523/JNEUROSCI.4682-05.2006
999 C 5 |y 1995
|2 Crossref
|o Benjamini 1995
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.2259-12.2012
|2 Crossref
|o 10.1523/JNEUROSCI.2259-12.2012
999 C 5 |9 -- missing cx lookup --
|a 10.1002/1531-8257(199905)14:3<423::AID-MDS1006>3.0.CO;2-V
|2 Crossref
|o 10.1002/1531-8257(199905)14:3<423::AID-MDS1006>3.0.CO;2-V
999 C 5 |9 -- missing cx lookup --
|a 10.1001/jamaneurol.2013.581
|2 Crossref
|o 10.1001/jamaneurol.2013.581
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S0924-980X(97)00085-4
|2 Crossref
|o 10.1016/S0924-980X(97)00085-4
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.jneumeth.2003.10.009
|2 Crossref
|o 10.1016/j.jneumeth.2003.10.009
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S0079-6123(06)59022-3
|2 Crossref
|o 10.1016/S0079-6123(06)59022-3
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/awh053
|2 Crossref
|o 10.1093/brain/awh053
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2004.11.023
|2 Crossref
|o 10.1016/j.neuroimage.2004.11.023
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuron.2013.09.038
|2 Crossref
|o 10.1016/j.neuron.2013.09.038
999 C 5 |9 -- missing cx lookup --
|a 10.1136/jnnp.2010.217489
|2 Crossref
|o 10.1136/jnnp.2010.217489
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nrn2979
|2 Crossref
|o 10.1038/nrn2979
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neunet.2006.03.006
|2 Crossref
|o 10.1016/j.neunet.2006.03.006
999 C 5 |9 -- missing cx lookup --
|a 10.1126/science.1167093
|2 Crossref
|o 10.1126/science.1167093
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S0924-980X(98)00045-9
|2 Crossref
|o 10.1016/S0924-980X(98)00045-9
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mds.21836
|2 Crossref
|o 10.1002/mds.21836
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2012.09.036
|2 Crossref
|o 10.1016/j.neuroimage.2012.09.036
999 C 5 |9 -- missing cx lookup --
|a 10.1002/hbm.22546
|2 Crossref
|o 10.1002/hbm.22546
999 C 5 |y 2013
|2 Crossref
|o Herz 2013
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2013.11.023
|2 Crossref
|o 10.1016/j.neuroimage.2013.11.023
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nn.3101
|2 Crossref
|o 10.1038/nn.3101
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2012.11.036
|2 Crossref
|o 10.1016/j.neuroimage.2012.11.036
999 C 5 |9 -- missing cx lookup --
|a 10.3389/fnsys.2013.00118
|2 Crossref
|o 10.3389/fnsys.2013.00118
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/awq012
|2 Crossref
|o 10.1093/brain/awq012
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/awu027
|2 Crossref
|o 10.1093/brain/awu027
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.0282-08.2008
|2 Crossref
|o 10.1523/JNEUROSCI.0282-08.2008
999 C 5 |9 -- missing cx lookup --
|a 10.1111/j.1460-9568.2006.04717.x
|2 Crossref
|o 10.1111/j.1460-9568.2006.04717.x
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mds.10638
|2 Crossref
|o 10.1002/mds.10638
999 C 5 |9 -- missing cx lookup --
|a 10.1093/cercor/bhp269
|2 Crossref
|o 10.1093/cercor/bhp269
999 C 5 |9 -- missing cx lookup --
|a 10.3389/fnsys.2010.00143
|2 Crossref
|o 10.3389/fnsys.2010.00143
999 C 5 |9 -- missing cx lookup --
|a 10.1371/journal.pcbi.1000453
|2 Crossref
|o 10.1371/journal.pcbi.1000453
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mds.21386
|2 Crossref
|o 10.1002/mds.21386
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuron.2012.09.032
|2 Crossref
|o 10.1016/j.neuron.2012.09.032
999 C 5 |9 -- missing cx lookup --
|a 10.1002/ana.23951
|2 Crossref
|o 10.1002/ana.23951
999 C 5 |9 -- missing cx lookup --
|a 10.1007/s100720200033
|2 Crossref
|o 10.1007/s100720200033
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.jneumeth.2007.03.024
|2 Crossref
|o 10.1016/j.jneumeth.2007.03.024
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S0304-3940(97)00877-X
|2 Crossref
|o 10.1016/S0304-3940(97)00877-X
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S0168-0102(02)00027-5
|2 Crossref
|o 10.1016/S0168-0102(02)00027-5
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.clinph.2004.04.029
|2 Crossref
|o 10.1016/j.clinph.2004.04.029
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.nicl.2013.04.003
|2 Crossref
|o 10.1016/j.nicl.2013.04.003
999 C 5 |9 -- missing cx lookup --
|a 10.1155/2011/156869
|2 Crossref
|o 10.1155/2011/156869
999 C 5 |9 -- missing cx lookup --
|a 10.1371/journal.pone.0066910
|2 Crossref
|o 10.1371/journal.pone.0066910
999 C 5 |9 -- missing cx lookup --
|a 10.1093/cercor/bhj088
|2 Crossref
|o 10.1093/cercor/bhj088
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mds.22284
|2 Crossref
|o 10.1002/mds.22284
999 C 5 |9 -- missing cx lookup --
|a 10.1006/nimg.2000.0685
|2 Crossref
|o 10.1006/nimg.2000.0685
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/awf042
|2 Crossref
|o 10.1093/brain/awf042
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/120.8.1301
|2 Crossref
|o 10.1093/brain/120.8.1301
999 C 5 |9 -- missing cx lookup --
|a 10.1111/j.1460-9568.2005.03973.x
|2 Crossref
|o 10.1111/j.1460-9568.2005.03973.x
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S0168-0102(98)00046-7
|2 Crossref
|o 10.1016/S0168-0102(98)00046-7
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/awh480
|2 Crossref
|o 10.1093/brain/awh480
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.brs.2013.05.004
|2 Crossref
|o 10.1016/j.brs.2013.05.004
999 C 5 |9 -- missing cx lookup --
|a 10.1152/physrev.1988.68.3.649
|2 Crossref
|o 10.1152/physrev.1988.68.3.649
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2008.02.027
|2 Crossref
|o 10.1016/j.neuroimage.2008.02.027
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.expneurol.2008.05.021
|2 Crossref
|o 10.1016/j.expneurol.2008.05.021
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S1388-2457(02)00151-7
|2 Crossref
|o 10.1016/S1388-2457(02)00151-7
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/awg022
|2 Crossref
|o 10.1093/brain/awg022
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuron.2006.09.020
|2 Crossref
|o 10.1016/j.neuron.2006.09.020
999 C 5 |9 -- missing cx lookup --
|a 10.1093/cercor/bht170
|2 Crossref
|o 10.1093/cercor/bht170
999 C 5 |9 -- missing cx lookup --
|a 10.1111/j.1460-9568.2012.08014.x
|2 Crossref
|o 10.1111/j.1460-9568.2012.08014.x
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mds.23374
|2 Crossref
|o 10.1002/mds.23374
999 C 5 |9 -- missing cx lookup --
|a 10.1007/s00221-014-3916-y
|2 Crossref
|o 10.1007/s00221-014-3916-y
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/awt122
|2 Crossref
|o 10.1093/brain/awt122
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2012.06.058
|2 Crossref
|o 10.1016/j.neuroimage.2012.06.058


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21