001     138036
005     20240321220347.0
024 7 _ |a 10.1093/brain/awv125
|2 doi
024 7 _ |a pmid:25981963
|2 pmid
024 7 _ |a 0006-8950
|2 ISSN
024 7 _ |a 1460-2156
|2 ISSN
024 7 _ |a altmetric:4003221
|2 altmetric
037 _ _ |a DZNE-2020-04358
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Joshi, Yashashree
|0 P:(DE-2719)2630369
|b 0
|e First author
|u dzne
245 _ _ |a The MDM4/MDM2-p53-IGF1 axis controls axonal regeneration, sprouting and functional recovery after CNS injury.
260 _ _ |a Oxford
|c 2015
|b Oxford Univ. Press
264 _ 1 |3 online
|2 Crossref
|b Oxford University Press (OUP)
|c 2015-05-16
264 _ 1 |3 print
|2 Crossref
|b Oxford University Press (OUP)
|c 2015-07-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1589205359_2941
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Regeneration of injured central nervous system axons is highly restricted, causing neurological impairment. To date, although the lack of intrinsic regenerative potential is well described, a key regulatory molecular mechanism for the enhancement of both axonal regrowth and functional recovery after central nervous system injury remains elusive. While ubiquitin ligases coordinate neuronal morphogenesis and connectivity during development as well as after axonal injury, their role specifically in axonal regeneration is unknown. Following a bioinformatics network analysis combining ubiquitin ligases with previously defined axonal regenerative proteins, we found a triad composed of the ubiquitin ligases MDM4, MDM2 and the transcription factor p53 (encoded by TP53) as a putative central signalling complex restricting the regeneration program. Indeed, conditional deletion of MDM4 or pharmacological inhibition of MDM2/p53 interaction in the eye and spinal cord promote axonal regeneration and sprouting of the optic nerve after crush and of supraspinal tracts after spinal cord injury. The double conditional deletion of MDM4-p53 as well as MDM2 inhibition in p53-deficient mice blocks this regenerative phenotype, showing its dependence upon p53. Genome-wide gene expression analysis from ex vivo fluorescence-activated cell sorting in MDM4-deficient retinal ganglion cells identifies the downstream target IGF1R, whose activity and expression was found to be required for the regeneration elicited by MDM4 deletion. Importantly, we demonstrate that pharmacological enhancement of the MDM2/p53-IGF1R axis enhances axonal sprouting as well as functional recovery after spinal cord injury. Thus, our results show MDM4-MDM2/p53-IGF1R as an original regulatory mechanism for CNS regeneration and offer novel targets to enhance neurological recovery.media-1vid110.1093/brain/awv125_video_abstractawv125_video_abstract.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Mdm4 protein, mouse
|2 NLM Chemicals
650 _ 7 |a Proto-Oncogene Proteins
|2 NLM Chemicals
650 _ 7 |a Tumor Suppressor Protein p53
|2 NLM Chemicals
650 _ 7 |a insulin-like growth factor-1, mouse
|2 NLM Chemicals
650 _ 7 |a Insulin-Like Growth Factor I
|0 67763-96-6
|2 NLM Chemicals
650 _ 7 |a Mdm2 protein, mouse
|0 EC 2.3.2.27
|2 NLM Chemicals
650 _ 7 |a Proto-Oncogene Proteins c-mdm2
|0 EC 2.3.2.27
|2 NLM Chemicals
650 _ 7 |a Ubiquitin-Protein Ligases
|0 EC 2.3.2.27
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Axons: metabolism
|2 MeSH
650 _ 2 |a Axons: pathology
|2 MeSH
650 _ 2 |a Computational Biology
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Flow Cytometry
|2 MeSH
650 _ 2 |a Immunoblotting
|2 MeSH
650 _ 2 |a Immunohistochemistry
|2 MeSH
650 _ 2 |a Immunoprecipitation
|2 MeSH
650 _ 2 |a Insulin-Like Growth Factor I: metabolism
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Mice, Mutant Strains
|2 MeSH
650 _ 2 |a Nerve Crush
|2 MeSH
650 _ 2 |a Nerve Regeneration: physiology
|2 MeSH
650 _ 2 |a Optic Nerve Injuries: metabolism
|2 MeSH
650 _ 2 |a Optic Nerve Injuries: pathology
|2 MeSH
650 _ 2 |a Optic Nerve Injuries: physiopathology
|2 MeSH
650 _ 2 |a Proto-Oncogene Proteins: metabolism
|2 MeSH
650 _ 2 |a Proto-Oncogene Proteins c-mdm2: metabolism
|2 MeSH
650 _ 2 |a Recovery of Function: physiology
|2 MeSH
650 _ 2 |a Reverse Transcriptase Polymerase Chain Reaction
|2 MeSH
650 _ 2 |a Signal Transduction: physiology
|2 MeSH
650 _ 2 |a Spinal Cord Injuries: metabolism
|2 MeSH
650 _ 2 |a Spinal Cord Injuries: pathology
|2 MeSH
650 _ 2 |a Spinal Cord Injuries: physiopathology
|2 MeSH
650 _ 2 |a Transcriptome
|2 MeSH
650 _ 2 |a Tumor Suppressor Protein p53: metabolism
|2 MeSH
650 _ 2 |a Ubiquitin-Protein Ligases: metabolism
|2 MeSH
700 1 _ |a Sória, Marília Grando
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Quadrato, Giorgia
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Inak, Gizem
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhou, Luming
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hervera, Arnau
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Rathore, Khizr I
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Elnaggar, Mohamed
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Cucchiarini, Magali
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Magali, Cucchiarini
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Marine, Jeanne Christophe
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Puttagunta, Radhika
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Di Giovanni, Simone
|0 P:(DE-HGF)0
|b 12
|e Corresponding author
773 1 8 |a 10.1093/brain/awv125
|b : Oxford University Press (OUP), 2015-05-16
|n 7
|p 1843-1862
|3 journal-article
|2 Crossref
|t Brain
|v 138
|y 2015
|x 0006-8950
773 _ _ |a 10.1093/brain/awv125
|g Vol. 138, no. Pt 7, p. 1843 - 1862
|0 PERI:(DE-600)1474117-9
|n 7
|q 138:Pt 7<1843 - 1862
|p 1843-1862
|t Brain
|v 138
|y 2015
|x 0006-8950
909 C O |o oai:pub.dzne.de:138036
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2630369
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|2 G:(DE-HGF)POF3-300
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2015
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b BRAIN : 2017
920 1 _ |0 I:(DE-2719)1240015
|k AG N.N. 3
|l AG N.N.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1240015
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1089/neu.2006.23.635
|9 -- missing cx lookup --
|2 Crossref
|o 10.1089/neu.2006.23.635
999 C 5 |a 10.1126/science.1120972
|9 -- missing cx lookup --
|2 Crossref
|o 10.1126/science.1120972
999 C 5 |a 10.1073/pnas.1120684109
|9 -- missing cx lookup --
|2 Crossref
|o 10.1073/pnas.1120684109
999 C 5 |a 10.3109/10409230903401507
|9 -- missing cx lookup --
|2 Crossref
|o 10.3109/10409230903401507
999 C 5 |a 10.1038/nrn3176
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nrn3176
999 C 5 |a 10.1038/nrc2763
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nrc2763
999 C 5 |a 10.1523/JNEUROSCI.0815-06.2006
|9 -- missing cx lookup --
|2 Crossref
|o 10.1523/JNEUROSCI.0815-06.2006
999 C 5 |a 10.1038/sj.emboj.7601292
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/sj.emboj.7601292
999 C 5 |a 10.1523/JNEUROSCI.0612-07.2007
|9 -- missing cx lookup --
|2 Crossref
|o 10.1523/JNEUROSCI.0612-07.2007
999 C 5 |a 10.1523/JNEUROSCI.1925-12.2012
|9 -- missing cx lookup --
|2 Crossref
|o 10.1523/JNEUROSCI.1925-12.2012
999 C 5 |a 10.1093/brain/awr142
|9 -- missing cx lookup --
|2 Crossref
|o 10.1093/brain/awr142
999 C 5 |a 10.1038/cdd.2009.216
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/cdd.2009.216
999 C 5 |a 10.1517/14728220903307517
|9 -- missing cx lookup --
|2 Crossref
|o 10.1517/14728220903307517
999 C 5 |a 10.1038/nprot.2006.207
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nprot.2006.207
999 C 5 |a 10.1128/MCB.26.1.192-198.2006
|9 -- missing cx lookup --
|2 Crossref
|o 10.1128/MCB.26.1.192-198.2006
999 C 5 |a 10.1111/j.1471-4159.2006.04257.x
|9 -- missing cx lookup --
|2 Crossref
|o 10.1111/j.1471-4159.2006.04257.x
999 C 5 |a 10.1016/j.expneurol.2004.05.043
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.expneurol.2004.05.043
999 C 5 |a 10.1093/nar/gkn760
|9 -- missing cx lookup --
|2 Crossref
|o 10.1093/nar/gkn760
999 C 5 |a 10.1046/j.1469-7580.1999.19410015.x
|9 -- missing cx lookup --
|2 Crossref
|o 10.1046/j.1469-7580.1999.19410015.x
999 C 5 |a 10.1038/sj.onc.1205993
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/sj.onc.1205993
999 C 5 |a 10.1371/journal.pone.0033322
|9 -- missing cx lookup --
|2 Crossref
|o 10.1371/journal.pone.0033322
999 C 5 |a 10.1038/sj.cdd.4401925
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/sj.cdd.4401925
999 C 5 |a 10.1523/JNEUROSCI.20-12-04615.2000
|9 -- missing cx lookup --
|2 Crossref
|o 10.1523/JNEUROSCI.20-12-04615.2000
999 C 5 |a 10.1038/nn.2603
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nn.2603
999 C 5 |a 10.1016/j.bbrc.2005.03.151
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.bbrc.2005.03.151
999 C 5 |a 10.2741/3780
|9 -- missing cx lookup --
|2 Crossref
|o 10.2741/3780
999 C 5 |a 10.1126/science.1175737
|9 -- missing cx lookup --
|2 Crossref
|o 10.1126/science.1175737
999 C 5 |a 10.1073/pnas.1100426108
|9 -- missing cx lookup --
|2 Crossref
|o 10.1073/pnas.1100426108
999 C 5 |a 10.1126/science.1161566
|9 -- missing cx lookup --
|2 Crossref
|o 10.1126/science.1161566
999 C 5 |y 2011
|2 Crossref
|o Puttagunta 2011
999 C 5 |a 10.1083/jcb.201102066
|9 -- missing cx lookup --
|2 Crossref
|o 10.1083/jcb.201102066
999 C 5 |a 10.1523/JNEUROSCI.0420-09.2009
|9 -- missing cx lookup --
|2 Crossref
|o 10.1523/JNEUROSCI.0420-09.2009
999 C 5 |a 10.1073/pnas.1008652107
|9 -- missing cx lookup --
|2 Crossref
|o 10.1073/pnas.1008652107
999 C 5 |a 10.1074/jbc.M109.056747
|9 -- missing cx lookup --
|2 Crossref
|o 10.1074/jbc.M109.056747
999 C 5 |a 10.1089/104454902320219077
|9 -- missing cx lookup --
|2 Crossref
|o 10.1089/104454902320219077
999 C 5 |a 10.1111/j.1460-9568.1993.tb00970.x
|9 -- missing cx lookup --
|2 Crossref
|o 10.1111/j.1460-9568.1993.tb00970.x
999 C 5 |a 10.1016/j.molcel.2007.08.021
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.molcel.2007.08.021
999 C 5 |a 10.1074/jbc.M508527200
|9 -- missing cx lookup --
|2 Crossref
|o 10.1074/jbc.M508527200
999 C 5 |a 10.1016/S0896-6273(03)00226-5
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/S0896-6273(03)00226-5
999 C 5 |a 10.1016/j.neuron.2009.11.021
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.neuron.2009.11.021
999 C 5 |a 10.1074/jbc.C500358200
|9 -- missing cx lookup --
|2 Crossref
|o 10.1074/jbc.C500358200
999 C 5 |a 10.1002/cne.10593
|9 -- missing cx lookup --
|2 Crossref
|o 10.1002/cne.10593
999 C 5 |a 10.1523/JNEUROSCI.5372-07.2008
|9 -- missing cx lookup --
|2 Crossref
|o 10.1523/JNEUROSCI.5372-07.2008
999 C 5 |a 10.1371/journal.pone.0018424
|9 -- missing cx lookup --
|2 Crossref
|o 10.1371/journal.pone.0018424
999 C 5 |a 10.1038/nature10594
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nature10594
999 C 5 |a 10.1016/j.neuroscience.2004.05.010
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.neuroscience.2004.05.010
999 C 5 |a 10.1038/embor.2009.89
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/embor.2009.89
999 C 5 |a 10.1038/cdd.2008.175
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/cdd.2008.175
999 C 5 |a 10.1523/JNEUROSCI.4416-09.2009
|9 -- missing cx lookup --
|2 Crossref
|o 10.1523/JNEUROSCI.4416-09.2009
999 C 5 |a 10.1111/j.1471-4159.2006.03663.x
|9 -- missing cx lookup --
|2 Crossref
|o 10.1111/j.1471-4159.2006.03663.x
999 C 5 |a 10.1016/j.biocel.2007.03.022
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.biocel.2007.03.022
999 C 5 |a 10.1016/B978-0-12-407178-0.00005-3
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/B978-0-12-407178-0.00005-3
999 C 5 |a 10.1126/science.1092472
|9 -- missing cx lookup --
|2 Crossref
|o 10.1126/science.1092472
999 C 5 |a 10.1073/pnas.1215060109
|9 -- missing cx lookup --
|2 Crossref
|o 10.1073/pnas.1215060109
999 C 5 |a 10.1167/iovs.11-8681
|9 -- missing cx lookup --
|2 Crossref
|o 10.1167/iovs.11-8681
999 C 5 |a 10.1016/j.tcb.2010.01.009
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.tcb.2010.01.009
999 C 5 |a 10.1016/j.tins.2012.12.004
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.tins.2012.12.004
999 C 5 |a 10.1038/nrn1956
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nrn1956
999 C 5 |a 10.1523/JNEUROSCI.5397-08.2009
|9 -- missing cx lookup --
|2 Crossref
|o 10.1523/JNEUROSCI.5397-08.2009


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21