001     138044
005     20240321220348.0
024 7 _ |a 10.1371/journal.pone.0133921
|2 doi
024 7 _ |a pmid:26226146
|2 pmid
024 7 _ |a pmc:PMC4520483
|2 pmc
024 7 _ |a altmetric:4447109
|2 altmetric
037 _ _ |a DZNE-2020-04366
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Stucht, Daniel
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction.
260 _ _ |a San Francisco, California, US
|c 2015
|b PLOS
264 _ 1 |3 online
|2 Crossref
|b Public Library of Science (PLoS)
|c 2015-07-30
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1709719401_11498
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a High field MRI systems, such as 7 Tesla (T) scanners, can deliver higher signal to noise ratio (SNR) than lower field scanners and thus allow for the acquisition of data with higher spatial resolution, which is often demanded by users in the fields of clinical and neuroscientific imaging. However, high resolution scans may require long acquisition times, which in turn increase the discomfort for the subject and the risk of subject motion. Even with a cooperative and trained subject, involuntary motion due to heartbeat, swallowing, respiration and changes in muscle tone can cause image artifacts that reduce the effective resolution. In addition, scanning with higher resolution leads to increased sensitivity to even very small movements. Prospective motion correction (PMC) at 3T and 7T has proven to increase image quality in case of subject motion. Although the application of prospective motion correction is becoming more popular, previous articles focused on proof of concept studies and technical descriptions, whereas this paper briefly describes the technical aspects of the optical tracking system, marker fixation and cross calibration and focuses on the application of PMC to very high resolution imaging without intentional motion. In this study we acquired in vivo MR images at 7T using prospective motion correction during long acquisitions. As a result, we present images among the highest, if not the highest resolution of in vivo human brain MRI ever acquired.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
542 _ _ |i 2015-07-30
|2 Crossref
|u http://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 2 |a Artifacts
|2 MeSH
650 _ 2 |a Brain: physiology
|2 MeSH
650 _ 2 |a Calibration
|2 MeSH
650 _ 2 |a Equipment Design: methods
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Image Processing, Computer-Assisted: methods
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Motion
|2 MeSH
650 _ 2 |a Movement: physiology
|2 MeSH
650 _ 2 |a Prospective Studies
|2 MeSH
650 _ 2 |a Respiration
|2 MeSH
700 1 _ |a Danishad, K Appu
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schulze, Peter
|0 P:(DE-2719)2810420
|b 2
|u dzne
700 1 _ |a Godenschweger, Frank
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zaitsev, Maxim
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Speck, Oliver
|0 P:(DE-2719)2810706
|b 5
|e Last author
|u dzne
773 1 8 |a 10.1371/journal.pone.0133921
|b : Public Library of Science (PLoS), 2015-07-30
|n 7
|p e0133921
|3 journal-article
|2 Crossref
|t PLOS ONE
|v 10
|y 2015
|x 1932-6203
773 _ _ |a 10.1371/journal.pone.0133921
|g Vol. 10, no. 7, p. e0133921 -
|0 PERI:(DE-600)2267670-3
|n 7
|q 10:7|p e0133921
|t PLOS ONE
|v 10
|y 2015
|x 1932-6203
856 4 _ |u https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133921
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4520483
856 4 _ |u https://pub.dzne.de/record/138044/files/DZNE-2020-04366.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/138044/files/DZNE-2020-04366.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:138044
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2810420
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2810706
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS ONE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-2719)1340016
|k Core MR PET
|l Core MR PET
|x 0
920 1 _ |0 I:(DE-2719)5000006
|k AG Düzel
|l Clinical Neurophysiology and Memory
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1340016
980 _ _ |a I:(DE-2719)5000006
980 1 _ |a FullTexts
999 C 5 |y 2015
|2 Crossref
|o R Pohmann 2015
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2012.12.016
|2 Crossref
|o 10.1016/j.neuroimage.2012.12.016
999 C 5 |y 2011
|2 Crossref
|o S Yang 2011
999 C 5 |y 2013
|2 Crossref
|o S Yang 2013
999 C 5 |y 2008
|2 Crossref
|o Y Ge 2008
999 C 5 |9 -- missing cx lookup --
|a 10.1148/radiol.12110799
|2 Crossref
|o 10.1148/radiol.12110799
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.schres.2013.04.020
|2 Crossref
|o 10.1016/j.schres.2013.04.020
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.mri.2012.10.023
|2 Crossref
|o 10.1016/j.mri.2012.10.023
999 C 5 |9 -- missing cx lookup --
|a 10.1038/sdata.2014.3
|2 Crossref
|o 10.1038/sdata.2014.3
999 C 5 |9 -- missing cx lookup --
|a 10.1371/journal.pone.0106697
|2 Crossref
|o 10.1371/journal.pone.0106697
999 C 5 |9 -- missing cx lookup --
|a 10.1038/sdata.2014.50
|2 Crossref
|o 10.1038/sdata.2014.50
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.3241-12.2013
|2 Crossref
|o 10.1523/JNEUROSCI.3241-12.2013
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2013.08.013
|2 Crossref
|o 10.1016/j.neuroimage.2013.08.013
999 C 5 |y 2015
|2 Crossref
|o M Zaitsev 2015
999 C 5 |y 2012
|2 Crossref
|o D Stucht 2012
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2014.12.006
|2 Crossref
|o 10.1016/j.neuroimage.2014.12.006
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.22191
|2 Crossref
|o 10.1002/mrm.22191
999 C 5 |9 -- missing cx lookup --
|a 10.1148/radiology.152.1.6729101
|2 Crossref
|o 10.1148/radiology.152.1.6729101
999 C 5 |9 -- missing cx lookup --
|a 10.1118/1.595782
|2 Crossref
|o 10.1118/1.595782
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.24645
|2 Crossref
|o 10.1002/mrm.24645
999 C 5 |9 -- missing cx lookup --
|a 10.1148/radiology.150.1.6689753
|2 Crossref
|o 10.1148/radiology.150.1.6689753
999 C 5 |9 -- missing cx lookup --
|a 10.1148/radiology.150.1.6227934
|2 Crossref
|o 10.1148/radiology.150.1.6227934
999 C 5 |9 -- missing cx lookup --
|a 10.1148/radiology.151.2.6709928
|2 Crossref
|o 10.1148/radiology.151.2.6709928
999 C 5 |9 -- missing cx lookup --
|a 10.1148/radiology.160.3.3737920
|2 Crossref
|o 10.1148/radiology.160.3.3737920
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2010.03.048
|2 Crossref
|o 10.1016/j.neuroimage.2010.03.048
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.24202
|2 Crossref
|o 10.1002/mrm.24202
999 C 5 |9 -- missing cx lookup --
|a 10.2214/ajr.143.6.1175
|2 Crossref
|o 10.2214/ajr.143.6.1175
999 C 5 |9 -- missing cx lookup --
|a 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
|2 Crossref
|o 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
999 C 5 |9 -- missing cx lookup --
|a 10.1002/(SICI)1522-2594(200003)43:3<459::AID-MRM19>3.0.CO;2-1
|2 Crossref
|o 10.1002/(SICI)1522-2594(200003)43:3<459::AID-MRM19>3.0.CO;2-1
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.1910390210
|2 Crossref
|o 10.1002/mrm.1910390210
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.22780
|2 Crossref
|o 10.1002/mrm.22780
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.22082
|2 Crossref
|o 10.1002/mrm.22082
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2006.01.039
|2 Crossref
|o 10.1016/j.neuroimage.2006.01.039
999 C 5 |9 -- missing cx lookup --
|a 10.1002/jmri.22467
|2 Crossref
|o 10.1002/jmri.22467
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.22076
|2 Crossref
|o 10.1002/mrm.22076
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.24314
|2 Crossref
|o 10.1002/mrm.24314
999 C 5 |2 Crossref
|o
999 C 5 |9 -- missing cx lookup --
|a 10.1371/journal.pone.0048088
|2 Crossref
|o 10.1371/journal.pone.0048088
999 C 5 |9 -- missing cx lookup --
|a 10.1111/0031-868X.00113
|2 Crossref
|o 10.1111/0031-868X.00113
999 C 5 |y 2011
|2 Crossref
|o I Kadashevich 2011


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21