000138072 001__ 138072
000138072 005__ 20240321220351.0
000138072 0247_ $$2doi$$a10.1002/hipo.22424
000138072 0247_ $$2pmid$$apmid:25620400
000138072 0247_ $$2ISSN$$a1050-9631
000138072 0247_ $$2ISSN$$a1098-1063
000138072 0247_ $$2altmetric$$aaltmetric:3165777
000138072 037__ $$aDZNE-2020-04394
000138072 041__ $$aEnglish
000138072 082__ $$a610
000138072 1001_ $$0P:(DE-HGF)0$$aCraig, Michael$$b0
000138072 245__ $$aRest boosts the long-term retention of spatial associative and temporal order information.
000138072 260__ $$aNew York, NY [u.a.]$$bWiley$$c2015
000138072 264_1 $$2Crossref$$3online$$bWiley$$c2015-03-17
000138072 264_1 $$2Crossref$$3print$$bWiley$$c2015-09-01
000138072 3367_ $$2DRIVER$$aarticle
000138072 3367_ $$2DataCite$$aOutput Types/Journal article
000138072 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1590678525_3615
000138072 3367_ $$2BibTeX$$aARTICLE
000138072 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000138072 3367_ $$00$$2EndNote$$aJournal Article
000138072 520__ $$aPeople retain more new verbal episodic information for at least 7 days if they rest for a few minutes after learning than if they attend to new information. It is hypothesized that rest allows for superior consolidation of new memories. In rodents, rest periods promote hippocampal replay of a recently travelled route, and this replay is thought to be critical for memory consolidation and subsequent spatial navigation. If rest boosts human memory by promoting hippocampal replay/consolidation, then the beneficial effect of rest should extend to complex (hippocampal) memory tasks, for example, tasks probing associations and sequences. We investigated this question via a virtual reality route memory task. Healthy young participants learned two routes to a 100% criterion. One route was followed by a 10-min rest and the other by a 10-min spot the difference game. For each learned route, participants performed four delayed spatial memory tests probing: (i) associative (landmark-direction) memory, (ii) cognitive map formation, (iii) temporal (landmark) order memory, and (iv) route memory. Tests were repeated after 7 days to determine any long-term effects. No effect of rest was detected in the route memory or cognitive map tests, most likely due to ceiling and floor effects, respectively. Rest did, however, boost retention in the associative memory and temporal order memory tests, and this boost remained for at least 7 days. We therefore demonstrate that the benefit of rest extends to (spatial) associative and temporal order memory in humans. We hypothesise that rest allows superior consolidation/hippocampal replay of novel information pertaining to a recently learned route, thus boosting new memories over the long term.
000138072 536__ $$0G:(DE-HGF)POF3-344$$a344 - Clinical and Health Care Research (POF3-344)$$cPOF3-344$$fPOF III$$x0
000138072 542__ $$2Crossref$$i2015-09-01$$uhttp://doi.wiley.com/10.1002/tdm_license_1.1
000138072 588__ $$aDataset connected to CrossRef, PubMed,
000138072 650_2 $$2MeSH$$aAdolescent
000138072 650_2 $$2MeSH$$aAnalysis of Variance
000138072 650_2 $$2MeSH$$aAssociation Learning: physiology
000138072 650_2 $$2MeSH$$aFemale
000138072 650_2 $$2MeSH$$aHumans
000138072 650_2 $$2MeSH$$aMale
000138072 650_2 $$2MeSH$$aMemory, Long-Term: physiology
000138072 650_2 $$2MeSH$$aMental Recall: physiology
000138072 650_2 $$2MeSH$$aNeuropsychological Tests
000138072 650_2 $$2MeSH$$aRecognition, Psychology
000138072 650_2 $$2MeSH$$aRest: physiology
000138072 650_2 $$2MeSH$$aSpatial Behavior: physiology
000138072 650_2 $$2MeSH$$aTime Factors
000138072 650_2 $$2MeSH$$aUser-Computer Interface
000138072 650_2 $$2MeSH$$aYoung Adult
000138072 7001_ $$0P:(DE-HGF)0$$aDewar, Michaela$$b1
000138072 7001_ $$0P:(DE-HGF)0$$aDella Sala, Sergio$$b2
000138072 7001_ $$0P:(DE-2719)2810583$$aWolbers, Thomas$$b3$$eLast author$$udzne
000138072 77318 $$2Crossref$$3journal-article$$a10.1002/hipo.22424$$b : Wiley, 2015-03-17$$n9$$p1017-1027$$tHippocampus$$v25$$x1050-9631$$y2015
000138072 773__ $$0PERI:(DE-600)1498049-6$$a10.1002/hipo.22424$$gVol. 25, no. 9, p. 1017 - 1027$$n9$$p1017-1027$$q25:9<1017 - 1027$$tHippocampus$$v25$$x1050-9631$$y2015
000138072 909CO $$ooai:pub.dzne.de:138072$$pVDB
000138072 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810583$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000138072 9131_ $$0G:(DE-HGF)POF3-344$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$aDE-HGF$$bForschungsbereich Gesundheit$$lErkrankungen des Nervensystems$$vClinical and Health Care Research$$x0
000138072 9141_ $$y2015
000138072 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000138072 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHIPPOCAMPUS : 2017
000138072 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000138072 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000138072 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000138072 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000138072 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000138072 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000138072 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000138072 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000138072 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000138072 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000138072 9201_ $$0I:(DE-2719)1310002$$kAG Wolbers$$lAging & Cognition$$x0
000138072 980__ $$ajournal
000138072 980__ $$aVDB
000138072 980__ $$aI:(DE-2719)1310002
000138072 980__ $$aUNRESTRICTED
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1037/neu0000091$$o10.1037/neu0000091
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.4556-11.2012$$o10.1523/JNEUROSCI.4556-11.2012
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nn.2732$$o10.1038/nn.2732
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/awh107$$o10.1093/brain/awh107
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0093915$$o10.1371/journal.pone.0093915
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuron.2009.07.027$$o10.1016/j.neuron.2009.07.027
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuron.2005.02.030$$o10.1016/j.neuron.2005.02.030
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/09658210344000387$$o10.1080/09658210344000387
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuron.2010.02.022$$o10.1016/j.neuron.2010.02.022
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-9452(08)70492-1$$o10.1016/S0010-9452(08)70492-1
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1037/a0015568$$o10.1037/a0015568
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1177/0956797612441220$$o10.1177/0956797612441220
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0109542$$o10.1371/journal.pone.0109542
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nn.2648$$o10.1038/nn.2648
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.psych.55.090902.142050$$o10.1146/annurev.psych.55.090902.142050
000138072 999C5 $$2Crossref$$oEgo-Stengel 2011$$y2011
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuron.2014.07.032$$o10.1016/j.neuron.2014.07.032
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.conb.2006.10.006$$o10.1016/j.conb.2006.10.006
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.brainresbull.2006.07.015$$o10.1016/j.brainresbull.2006.07.015
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/hipo.20444$$o10.1002/hipo.20444
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature04587$$o10.1038/nature04587
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbr.2010.05.054$$o10.1016/j.bbr.2010.05.054
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nn.2384$$o10.1038/nn.2384
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuron.2010.01.034$$o10.1016/j.neuron.2010.01.034
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature08499$$o10.1038/nature08499
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.4118-06.2006$$o10.1523/JNEUROSCI.4118-06.2006
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/02724980443000746$$o10.1080/02724980443000746
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nn.2344$$o10.1038/nn.2344
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3389/neuro.01.023.2009$$o10.3389/neuro.01.023.2009
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3389/neuro.09.015.2008$$o10.3389/neuro.09.015.2008
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.02-09-01214.1982$$o10.1523/JNEUROSCI.02-09-01214.1982
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tins.2011.06.003$$o10.1016/j.tins.2011.06.003
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cognition.2013.04.011$$o10.1016/j.cognition.2013.04.011
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuron.2004.10.007$$o10.1016/j.neuron.2004.10.007
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0006697$$o10.1371/journal.pone.0006697
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neurobiolaging.2010.07.021$$o10.1016/j.neurobiolaging.2010.07.021
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuron.2010.01.001$$o10.1016/j.neuron.2010.01.001
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1135935$$o10.1126/science.1135935
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1101/lm.1828310$$o10.1101/lm.1828310
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/hipo.22115$$o10.1002/hipo.22115
000138072 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.psych.55.090902.141555$$o10.1146/annurev.psych.55.090902.141555