001     138072
005     20240321220351.0
024 7 _ |a 10.1002/hipo.22424
|2 doi
024 7 _ |a pmid:25620400
|2 pmid
024 7 _ |a 1050-9631
|2 ISSN
024 7 _ |a 1098-1063
|2 ISSN
024 7 _ |a altmetric:3165777
|2 altmetric
037 _ _ |a DZNE-2020-04394
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Craig, Michael
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Rest boosts the long-term retention of spatial associative and temporal order information.
260 _ _ |a New York, NY [u.a.]
|c 2015
|b Wiley
264 _ 1 |3 online
|2 Crossref
|b Wiley
|c 2015-03-17
264 _ 1 |3 print
|2 Crossref
|b Wiley
|c 2015-09-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1590678525_3615
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a People retain more new verbal episodic information for at least 7 days if they rest for a few minutes after learning than if they attend to new information. It is hypothesized that rest allows for superior consolidation of new memories. In rodents, rest periods promote hippocampal replay of a recently travelled route, and this replay is thought to be critical for memory consolidation and subsequent spatial navigation. If rest boosts human memory by promoting hippocampal replay/consolidation, then the beneficial effect of rest should extend to complex (hippocampal) memory tasks, for example, tasks probing associations and sequences. We investigated this question via a virtual reality route memory task. Healthy young participants learned two routes to a 100% criterion. One route was followed by a 10-min rest and the other by a 10-min spot the difference game. For each learned route, participants performed four delayed spatial memory tests probing: (i) associative (landmark-direction) memory, (ii) cognitive map formation, (iii) temporal (landmark) order memory, and (iv) route memory. Tests were repeated after 7 days to determine any long-term effects. No effect of rest was detected in the route memory or cognitive map tests, most likely due to ceiling and floor effects, respectively. Rest did, however, boost retention in the associative memory and temporal order memory tests, and this boost remained for at least 7 days. We therefore demonstrate that the benefit of rest extends to (spatial) associative and temporal order memory in humans. We hypothesise that rest allows superior consolidation/hippocampal replay of novel information pertaining to a recently learned route, thus boosting new memories over the long term.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
542 _ _ |i 2015-09-01
|2 Crossref
|u http://doi.wiley.com/10.1002/tdm_license_1.1
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 2 |a Adolescent
|2 MeSH
650 _ 2 |a Analysis of Variance
|2 MeSH
650 _ 2 |a Association Learning: physiology
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Memory, Long-Term: physiology
|2 MeSH
650 _ 2 |a Mental Recall: physiology
|2 MeSH
650 _ 2 |a Neuropsychological Tests
|2 MeSH
650 _ 2 |a Recognition, Psychology
|2 MeSH
650 _ 2 |a Rest: physiology
|2 MeSH
650 _ 2 |a Spatial Behavior: physiology
|2 MeSH
650 _ 2 |a Time Factors
|2 MeSH
650 _ 2 |a User-Computer Interface
|2 MeSH
650 _ 2 |a Young Adult
|2 MeSH
700 1 _ |a Dewar, Michaela
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Della Sala, Sergio
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wolbers, Thomas
|0 P:(DE-2719)2810583
|b 3
|e Last author
|u dzne
773 1 8 |a 10.1002/hipo.22424
|b : Wiley, 2015-03-17
|n 9
|p 1017-1027
|3 journal-article
|2 Crossref
|t Hippocampus
|v 25
|y 2015
|x 1050-9631
773 _ _ |a 10.1002/hipo.22424
|g Vol. 25, no. 9, p. 1017 - 1027
|0 PERI:(DE-600)1498049-6
|n 9
|q 25:9<1017 - 1027
|p 1017-1027
|t Hippocampus
|v 25
|y 2015
|x 1050-9631
909 C O |o oai:pub.dzne.de:138072
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2810583
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|2 G:(DE-HGF)POF3-300
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2015
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HIPPOCAMPUS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-2719)1310002
|k AG Wolbers
|l Aging & Cognition
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1310002
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1037/neu0000091
|9 -- missing cx lookup --
|2 Crossref
|o 10.1037/neu0000091
999 C 5 |a 10.1523/JNEUROSCI.4556-11.2012
|9 -- missing cx lookup --
|2 Crossref
|o 10.1523/JNEUROSCI.4556-11.2012
999 C 5 |a 10.1038/nn.2732
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nn.2732
999 C 5 |a 10.1093/brain/awh107
|9 -- missing cx lookup --
|2 Crossref
|o 10.1093/brain/awh107
999 C 5 |a 10.1371/journal.pone.0093915
|9 -- missing cx lookup --
|2 Crossref
|o 10.1371/journal.pone.0093915
999 C 5 |a 10.1016/j.neuron.2009.07.027
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.neuron.2009.07.027
999 C 5 |a 10.1016/j.neuron.2005.02.030
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.neuron.2005.02.030
999 C 5 |a 10.1080/09658210344000387
|9 -- missing cx lookup --
|2 Crossref
|o 10.1080/09658210344000387
999 C 5 |a 10.1016/j.neuron.2010.02.022
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.neuron.2010.02.022
999 C 5 |a 10.1016/S0010-9452(08)70492-1
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/S0010-9452(08)70492-1
999 C 5 |a 10.1037/a0015568
|9 -- missing cx lookup --
|2 Crossref
|o 10.1037/a0015568
999 C 5 |a 10.1177/0956797612441220
|9 -- missing cx lookup --
|2 Crossref
|o 10.1177/0956797612441220
999 C 5 |a 10.1371/journal.pone.0109542
|9 -- missing cx lookup --
|2 Crossref
|o 10.1371/journal.pone.0109542
999 C 5 |a 10.1038/nn.2648
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nn.2648
999 C 5 |a 10.1146/annurev.psych.55.090902.142050
|9 -- missing cx lookup --
|2 Crossref
|o 10.1146/annurev.psych.55.090902.142050
999 C 5 |y 2011
|2 Crossref
|o Ego-Stengel 2011
999 C 5 |a 10.1016/j.neuron.2014.07.032
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.neuron.2014.07.032
999 C 5 |a 10.1016/j.conb.2006.10.006
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.conb.2006.10.006
999 C 5 |a 10.1016/j.brainresbull.2006.07.015
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.brainresbull.2006.07.015
999 C 5 |a 10.1002/hipo.20444
|9 -- missing cx lookup --
|2 Crossref
|o 10.1002/hipo.20444
999 C 5 |a 10.1038/nature04587
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nature04587
999 C 5 |a 10.1016/j.bbr.2010.05.054
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.bbr.2010.05.054
999 C 5 |a 10.1038/nn.2384
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nn.2384
999 C 5 |a 10.1016/j.neuron.2010.01.034
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.neuron.2010.01.034
999 C 5 |a 10.1038/nature08499
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nature08499
999 C 5 |a 10.1523/JNEUROSCI.4118-06.2006
|9 -- missing cx lookup --
|2 Crossref
|o 10.1523/JNEUROSCI.4118-06.2006
999 C 5 |a 10.1080/02724980443000746
|9 -- missing cx lookup --
|2 Crossref
|o 10.1080/02724980443000746
999 C 5 |a 10.1038/nn.2344
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nn.2344
999 C 5 |a 10.3389/neuro.01.023.2009
|9 -- missing cx lookup --
|2 Crossref
|o 10.3389/neuro.01.023.2009
999 C 5 |a 10.3389/neuro.09.015.2008
|9 -- missing cx lookup --
|2 Crossref
|o 10.3389/neuro.09.015.2008
999 C 5 |a 10.1523/JNEUROSCI.02-09-01214.1982
|9 -- missing cx lookup --
|2 Crossref
|o 10.1523/JNEUROSCI.02-09-01214.1982
999 C 5 |a 10.1016/j.tins.2011.06.003
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.tins.2011.06.003
999 C 5 |a 10.1016/j.cognition.2013.04.011
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.cognition.2013.04.011
999 C 5 |a 10.1016/j.neuron.2004.10.007
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.neuron.2004.10.007
999 C 5 |a 10.1371/journal.pone.0006697
|9 -- missing cx lookup --
|2 Crossref
|o 10.1371/journal.pone.0006697
999 C 5 |a 10.1016/j.neurobiolaging.2010.07.021
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.neurobiolaging.2010.07.021
999 C 5 |a 10.1016/j.neuron.2010.01.001
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.neuron.2010.01.001
999 C 5 |a 10.1126/science.1135935
|9 -- missing cx lookup --
|2 Crossref
|o 10.1126/science.1135935
999 C 5 |a 10.1101/lm.1828310
|9 -- missing cx lookup --
|2 Crossref
|o 10.1101/lm.1828310
999 C 5 |a 10.1002/hipo.22115
|9 -- missing cx lookup --
|2 Crossref
|o 10.1002/hipo.22115
999 C 5 |a 10.1146/annurev.psych.55.090902.141555
|9 -- missing cx lookup --
|2 Crossref
|o 10.1146/annurev.psych.55.090902.141555


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21