001     138769
005     20240321220509.0
024 7 _ |a 10.1016/j.nbd.2015.09.001
|2 doi
024 7 _ |a pmid:26369879
|2 pmid
024 7 _ |a 0969-9961
|2 ISSN
024 7 _ |a 1095-953X
|2 ISSN
024 7 _ |a altmetric:4516272
|2 altmetric
037 _ _ |a DZNE-2020-05091
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Anglada-Huguet, Marta
|0 P:(DE-2719)9000008
|b 0
|e First author
245 _ _ |a Prostaglandin E2 EP2 activation reduces memory decline in R6/1 mouse model of Huntington's disease by the induction of BDNF-dependent synaptic plasticity.
260 _ _ |a Orlando, Fla.
|c 2016
|b Academic Press
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2016-11-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1590592945_12712
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Huntington's disease (HD) patients and mouse models show learning and memory impairment even before the onset of motor symptoms. Deficits in hippocampal synaptic plasticity have been involved in the HD memory impairment. Several studies show that prostaglandin E2 (PGE2) EP2 receptor stimulates synaptic plasticity and memory formation. However, this role was not explored in neurodegenerative diseases. Here, we investigated the capacity of PGE2 EP2 receptor to promote synaptic plasticity and memory improvements in a model of HD, the R6/1 mice, by administration of the agonist misoprostol. We found that misoprostol increases dendritic branching in cultured hippocampal neurons in a brain-derived neurotrophic factor (BDNF)-dependent manner. Then, we implanted an osmotic mini-pump system to chronically administrate misoprostol to R6/1 mice from 14 to 18weeks of age. We observed that misoprostol treatment ameliorates the R6/1 long-term memory deficits as analyzed by the T-maze spontaneous alternation task and the novel object recognition test. Importantly, administration of misoprostol promoted the expression of hippocampal BDNF. Moreover, the treatment with misoprostol in R6/1 mice blocked the reduction in the number of PSD-95 and VGluT-1 positive particles observed in hippocampus of vehicle-R6/1 mice. In addition, we observed an increase of cAMP levels in the dentate ` of WT and R6/1 mice treated with misoprostol. Accordingly, we showed a reduction in the number of mutant huntingtin nuclear inclusions in the dentate gyrus of R6/1 mice. Altogether, these results suggest a putative therapeutic effect of PGE2 EP2 receptor in reducing cognitive deficits in HD.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
542 _ _ |i 2016-11-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Brain-Derived Neurotrophic Factor
|2 NLM Chemicals
650 _ 7 |a Receptors, Prostaglandin E, EP2 Subtype
|2 NLM Chemicals
650 _ 7 |a Dinoprostone
|0 K7Q1JQR04M
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Brain-Derived Neurotrophic Factor: metabolism
|2 MeSH
650 _ 2 |a Cognition Disorders: metabolism
|2 MeSH
650 _ 2 |a Dinoprostone: metabolism
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Hippocampus: metabolism
|2 MeSH
650 _ 2 |a Huntington Disease: metabolism
|2 MeSH
650 _ 2 |a Huntington Disease: physiopathology
|2 MeSH
650 _ 2 |a Memory: physiology
|2 MeSH
650 _ 2 |a Memory Disorders: drug therapy
|2 MeSH
650 _ 2 |a Memory Disorders: physiopathology
|2 MeSH
650 _ 2 |a Mice, Transgenic
|2 MeSH
650 _ 2 |a Neuronal Plasticity: physiology
|2 MeSH
650 _ 2 |a Receptors, Prostaglandin E, EP2 Subtype: metabolism
|2 MeSH
700 1 _ |a Vidal-Sancho, Laura
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Giralt, Albert
|0 P:(DE-HGF)0
|b 2
700 1 _ |a García-Díaz Barriga, Gerardo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Xifró, Xavier
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Alberch, Jordi
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 1 8 |a 10.1016/j.nbd.2015.09.001
|b : Elsevier BV, 2016-11-01
|p 22-34
|3 journal-article
|2 Crossref
|t Neurobiology of Disease
|v 95
|y 2016
|x 0969-9961
773 _ _ |a 10.1016/j.nbd.2015.09.001
|g Vol. 95, p. 22 - 34
|0 PERI:(DE-600)1471408-5
|q 95<22 - 34
|p 22-34
|t Neurobiology of disease
|v 95
|y 2016
|x 0969-9961
909 C O |p VDB
|o oai:pub.dzne.de:138769
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9000008
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|2 G:(DE-HGF)POF3-300
|v Disease Mechanisms and Model Systems
|x 0
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROBIOL DIS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROBIOL DIS : 2017
920 1 _ |0 I:(DE-2719)1013014
|k AG Mandelkow 1
|l Structural Principles of Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1013014
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21