000138795 001__ 138795
000138795 005__ 20240321220511.0
000138795 0247_ $$2doi$$a10.1016/j.celrep.2016.08.093
000138795 0247_ $$2pmid$$apmid:27681427
000138795 0247_ $$2pmc$$apmc:PMC5055474
000138795 0247_ $$2altmetric$$aaltmetric:12313336
000138795 037__ $$aDZNE-2020-05117
000138795 041__ $$aEnglish
000138795 082__ $$a610
000138795 1001_ $$0P:(DE-HGF)0$$aManière, Gérard$$b0
000138795 245__ $$aDirect Sensing of Nutrients via a LAT1-like Transporter in Drosophila Insulin-Producing Cells.
000138795 260__ $$a[New York, NY]$$bElsevier$$c2016
000138795 264_1 $$2Crossref$$3print$$bElsevier BV$$c2016-09-01
000138795 3367_ $$2DRIVER$$aarticle
000138795 3367_ $$2DataCite$$aOutput Types/Journal article
000138795 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710341167_30566
000138795 3367_ $$2BibTeX$$aARTICLE
000138795 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000138795 3367_ $$00$$2EndNote$$aJournal Article
000138795 520__ $$aDietary leucine has been suspected to play an important role in insulin release, a hormone that controls satiety and metabolism. The mechanism by which insulin-producing cells (IPCs) sense leucine and regulate insulin secretion is still poorly understood. In Drosophila, insulin-like peptides (DILP2 and DILP5) are produced by brain IPCs and are released in the hemolymph after leucine ingestion. Using Ca(2+)-imaging and ex vivo cultured larval brains, we demonstrate that IPCs can directly sense extracellular leucine levels via minidiscs (MND), a leucine transporter. MND knockdown in IPCs abolished leucine-dependent changes, including loss of DILP2 and DILP5 in IPC bodies, consistent with the idea that MND is necessary for leucine-dependent DILP release. This, in turn, leads to a strong increase in hemolymph sugar levels and reduced growth. GDH knockdown in IPCs also reduced leucine-dependent DILP release, suggesting that nutrient sensing is coupled to the glutamate dehydrogenase pathway.
000138795 536__ $$0G:(DE-HGF)POF3-342$$a342 - Disease Mechanisms and Model Systems (POF3-342)$$cPOF3-342$$fPOF III$$x0
000138795 542__ $$2Crossref$$i2016-09-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000138795 542__ $$2Crossref$$i2016-08-31$$uhttp://creativecommons.org/licenses/by/4.0/
000138795 588__ $$aDataset connected to CrossRef, PubMed,
000138795 650_7 $$2NLM Chemicals$$aAmino Acid Transport Systems
000138795 650_7 $$2NLM Chemicals$$aDrosophila Proteins
000138795 650_7 $$2NLM Chemicals$$aIlp5 protein, Drosophila
000138795 650_7 $$2NLM Chemicals$$aInsulins
000138795 650_7 $$2NLM Chemicals$$aMnd protein, Drosophila
000138795 650_7 $$2NLM Chemicals$$aProtein Isoforms
000138795 650_7 $$0EC 1.4.1.2$$2NLM Chemicals$$aGlutamate Dehydrogenase
000138795 650_7 $$0GMW67QNF9C$$2NLM Chemicals$$aLeucine
000138795 650_7 $$0SY7Q814VUP$$2NLM Chemicals$$aCalcium
000138795 650_2 $$2MeSH$$aAmino Acid Transport Systems: genetics
000138795 650_2 $$2MeSH$$aAmino Acid Transport Systems: metabolism
000138795 650_2 $$2MeSH$$aAnimals
000138795 650_2 $$2MeSH$$aBrain: cytology
000138795 650_2 $$2MeSH$$aBrain: metabolism
000138795 650_2 $$2MeSH$$aCalcium: metabolism
000138795 650_2 $$2MeSH$$aDrosophila Proteins: genetics
000138795 650_2 $$2MeSH$$aDrosophila Proteins: metabolism
000138795 650_2 $$2MeSH$$aDrosophila melanogaster: cytology
000138795 650_2 $$2MeSH$$aDrosophila melanogaster: metabolism
000138795 650_2 $$2MeSH$$aGene Expression Regulation
000138795 650_2 $$2MeSH$$aGlutamate Dehydrogenase: genetics
000138795 650_2 $$2MeSH$$aGlutamate Dehydrogenase: metabolism
000138795 650_2 $$2MeSH$$aHemolymph: metabolism
000138795 650_2 $$2MeSH$$aInsulin-Secreting Cells: cytology
000138795 650_2 $$2MeSH$$aInsulin-Secreting Cells: metabolism
000138795 650_2 $$2MeSH$$aInsulins: genetics
000138795 650_2 $$2MeSH$$aInsulins: metabolism
000138795 650_2 $$2MeSH$$aLarva: cytology
000138795 650_2 $$2MeSH$$aLarva: metabolism
000138795 650_2 $$2MeSH$$aLeucine: administration & dosage
000138795 650_2 $$2MeSH$$aLeucine: metabolism
000138795 650_2 $$2MeSH$$aProtein Isoforms: genetics
000138795 650_2 $$2MeSH$$aProtein Isoforms: metabolism
000138795 650_2 $$2MeSH$$aSignal Transduction
000138795 7001_ $$0P:(DE-2719)2811714$$aZiegler, Anna B$$b1$$udzne
000138795 7001_ $$0P:(DE-HGF)0$$aGeillon, Flore$$b2
000138795 7001_ $$0P:(DE-HGF)0$$aFeatherstone, David E$$b3
000138795 7001_ $$0P:(DE-HGF)0$$aGrosjean, Yael$$b4$$eCorresponding author
000138795 77318 $$2Crossref$$3journal-article$$a10.1016/j.celrep.2016.08.093$$b : Elsevier BV, 2016-09-01$$n1$$p137-148$$tCell Reports$$v17$$x2211-1247$$y2016
000138795 773__ $$0PERI:(DE-600)2649101-1$$a10.1016/j.celrep.2016.08.093$$gVol. 17, no. 1, p. 137 - 148$$n1$$p137-148$$q17:1<137 - 148$$tCell reports$$v17$$x2211-1247$$y2016
000138795 8564_ $$uhttps://pub.dzne.de/record/138795/files/DZNE-2020-05117.pdf$$yOpenAccess
000138795 8564_ $$uhttps://pub.dzne.de/record/138795/files/DZNE-2020-05117.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000138795 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055474
000138795 909CO $$ooai:pub.dzne.de:138795$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000138795 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811714$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000138795 9131_ $$0G:(DE-HGF)POF3-342$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vDisease Mechanisms and Model Systems$$x0
000138795 9141_ $$y2016
000138795 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000138795 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000138795 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000138795 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL REP : 2017
000138795 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000138795 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000138795 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000138795 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000138795 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000138795 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000138795 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL REP : 2017
000138795 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000138795 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000138795 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000138795 9201_ $$0I:(DE-2719)1013018$$kAG Tavosanis$$lDynamics of neuronal circuits$$x0
000138795 980__ $$ajournal
000138795 980__ $$aVDB
000138795 980__ $$aUNRESTRICTED
000138795 980__ $$aI:(DE-2719)1013018
000138795 9801_ $$aFullTexts