001     139158
005     20240321220551.0
024 7 _ |a 10.3791/55176
|2 doi
024 7 _ |a pmid:28287587
|2 pmid
024 7 _ |a pmc:PMC5408834
|2 pmc
024 7 _ |a altmetric:20210659
|2 altmetric
037 _ _ |a DZNE-2020-05480
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Sugie, Atsushi
|0 P:(DE-2719)2810439
|b 0
|e First author
|u dzne
245 _ _ |a Analyzing Synaptic Modulation of Drosophila melanogaster Photoreceptors after Exposure to Prolonged Light.
260 _ _ |a New Delhi
|c 2017
|b JoVE124831
264 _ 1 |3 online
|2 Crossref
|b MyJove Corporation
|c 2017-02-10
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1708439434_6808
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The nervous system has the remarkable ability to adapt and respond to various stimuli. This neural adjustment is largely achieved through plasticity at the synaptic level. The Active Zone (AZ) is the region at the presynaptic membrane that mediates neurotransmitter release and is composed of a dense collection of scaffold proteins. AZs of Drosophila melanogaster (Drosophila) photoreceptors undergo molecular remodeling after prolonged exposure to natural ambient light. Thus the level of neuronal activity can rearrange the molecular composition of the AZ and contribute to the regulation of the functional output. Starting from the light exposure set-up preparation to the immunohistochemistry, this protocol details how to quantify the number, the spatial distribution, and the delocalization level of synaptic molecules at AZs in Drosophila photoreceptors. Using image analysis software, clusters of the GFP-fused AZ component Bruchpilot were identified for each R8 photoreceptor (R8) axon terminal. Detected Bruchpilot spots were automatically assigned to individual R8 axons. To calculate the distribution of spot frequency along the axon, we implemented a customized software plugin. Each axon's start-point and end-point were manually defined and the position of each Bruchpilot spot was projected onto the connecting line between start and end-point. Besides the number of Bruchpilot clusters, we also quantified the delocalization level of Bruchpilot-GFP within the clusters. These measurements reflect in detail the spatially resolved synaptic dynamics in a single neuron under different environmental conditions to stimuli.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Drosophila Proteins
|2 NLM Chemicals
650 _ 7 |a Luminescent Agents
|2 NLM Chemicals
650 _ 7 |a Green Fluorescent Proteins
|0 147336-22-9
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Drosophila Proteins: metabolism
|2 MeSH
650 _ 2 |a Drosophila melanogaster: metabolism
|2 MeSH
650 _ 2 |a Green Fluorescent Proteins: metabolism
|2 MeSH
650 _ 2 |a Light
|2 MeSH
650 _ 2 |a Luminescent Agents: metabolism
|2 MeSH
650 _ 2 |a Photoreceptor Cells, Invertebrate: metabolism
|2 MeSH
650 _ 2 |a Photoreceptor Cells, Invertebrate: radiation effects
|2 MeSH
650 _ 2 |a Presynaptic Terminals
|2 MeSH
650 _ 2 |a Protein Binding
|2 MeSH
650 _ 2 |a Protein Transport
|2 MeSH
650 _ 2 |a Synapses: metabolism
|2 MeSH
650 _ 2 |a Synaptic Transmission: physiology
|2 MeSH
700 1 _ |a Möhl, Christoph
|0 P:(DE-2719)2810422
|b 1
|u dzne
700 1 _ |a Hakeda-Suzuki, Satoko
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Matsui, Hideaki
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Suzuki, Takashi
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Tavosanis, Gaia
|0 P:(DE-2719)2810271
|b 5
|e Last author
|u dzne
773 1 8 |a 10.3791/55176
|b : MyJove Corporation, 2017-02-10
|n 120
|3 journal-article
|2 Crossref
|t Journal of Visualized Experiments
|y 2017
|x 1940-087X
773 _ _ |a 10.3791/55176
|g no. 120, p. 55176
|0 PERI:(DE-600)2975337-5
|n 120
|q :120<55176
|p 55176
|t JoVE journal
|v Neuroscience
|y 2017
|x 1940-087X
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408834
856 4 _ |u https://pub.dzne.de/record/139158/files/DZNE-2020-05480_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/139158/files/DZNE-2020-05480_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:139158
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2810439
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2810422
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2810271
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms and Model Systems
|x 0
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b JOVE-J VIS EXP : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
920 1 _ |0 I:(DE-2719)1013018
|k AG Tavosanis
|l Dynamics of neuronal circuits
|x 0
920 1 _ |0 I:(DE-2719)1040200
|k IDAF
|l Image and Data Analysis (CRFS-IDAF)
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1013018
980 _ _ |a I:(DE-2719)1040200
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21