000139241 001__ 139241
000139241 005__ 20240321220601.0
000139241 0247_ $$2doi$$a10.1016/j.neuroscience.2017.03.010
000139241 0247_ $$2pmid$$apmid:28323012
000139241 0247_ $$2ISSN$$a0306-4522
000139241 0247_ $$2ISSN$$a1873-7544
000139241 0247_ $$2altmetric$$aaltmetric:17795760
000139241 037__ $$aDZNE-2020-05563
000139241 041__ $$aEnglish
000139241 082__ $$a610
000139241 1001_ $$0P:(DE-2719)2811109$$aMatuszko, Gabriela$$b0$$eFirst author$$udzne
000139241 245__ $$aExtracellular matrix alterations in the ketamine model of schizophrenia.
000139241 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000139241 264_1 $$2Crossref$$3print$$bElsevier BV$$c2017-05-01
000139241 3367_ $$2DRIVER$$aarticle
000139241 3367_ $$2DataCite$$aOutput Types/Journal article
000139241 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705913066_13656
000139241 3367_ $$2BibTeX$$aARTICLE
000139241 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000139241 3367_ $$00$$2EndNote$$aJournal Article
000139241 520__ $$aThe neural extracellular matrix (ECM) plays an important role in regulation of perisomatic GABAergic inhibition and synaptic plasticity in the hippocampus and cortex. Decreased labeling of perineuronal nets, a form of ECM predominantly associated with parvalbumin-expressing interneurons in the brain, has been observed in post-mortem studies of schizophrenia patients, specifically, in brain areas such as prefrontal cortex, entorhinal cortex, and amygdala. Moreover, glial ECM in the form of dandelion clock-like structures was reported to be altered in schizophrenia patients. Here, we verified whether similar abnormalities in neural ECM can be reproduced in a rat model of schizophrenia, in which animals received sub-chronic administration of ketamine to reproduce the aspects of disease related to disrupted signaling through N-methyl-D-aspartate receptors. Our study focused on two schizophrenia-related brain areas, namely the medial prefrontal cortex (mPFC) and hippocampus. Semi-quantitative immunohistochemistry was performed to evaluate investigate ECM expression using Wisteria floribunda agglutinin (WFA) and CS56 antibody, both labeling distinct chondroitin sulfate epitopes enriched in perineuronal nets and glial ECM, respectively. Our analysis revealed that ketamine-treated rats exhibit reduced number of WFA-labeled perineuronal nets, and a decreased intensity of parvalbumin fluorescence in mPFC interneurons somata. Moreover, we found an increased expression of CS56 immunoreactive form of ECM. Importantly, the loss of perineuronal nets was revealed in the mPFC, and was not detected in the hippocampus, suggesting regional specificity of ECM alterations. These data open an avenue for further investigations of functional importance of ECM abnormalities in schizophrenia as well as for search of treatments for their compensation.
000139241 536__ $$0G:(DE-HGF)POF3-342$$a342 - Disease Mechanisms and Model Systems (POF3-342)$$cPOF3-342$$fPOF III$$x0
000139241 542__ $$2Crossref$$i2017-05-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000139241 588__ $$aDataset connected to CrossRef, PubMed,
000139241 650_7 $$2NLM Chemicals$$aParvalbumins
000139241 650_7 $$0690G0D6V8H$$2NLM Chemicals$$aKetamine
000139241 650_2 $$2MeSH$$aAmygdala: drug effects
000139241 650_2 $$2MeSH$$aAmygdala: metabolism
000139241 650_2 $$2MeSH$$aAnimals
000139241 650_2 $$2MeSH$$aDisease Models, Animal
000139241 650_2 $$2MeSH$$aExtracellular Matrix: drug effects
000139241 650_2 $$2MeSH$$aExtracellular Matrix: metabolism
000139241 650_2 $$2MeSH$$aHippocampus: drug effects
000139241 650_2 $$2MeSH$$aHippocampus: metabolism
000139241 650_2 $$2MeSH$$aImmunohistochemistry: methods
000139241 650_2 $$2MeSH$$aKetamine: pharmacology
000139241 650_2 $$2MeSH$$aMale
000139241 650_2 $$2MeSH$$aNeuroglia: drug effects
000139241 650_2 $$2MeSH$$aNeuroglia: metabolism
000139241 650_2 $$2MeSH$$aNeurons: drug effects
000139241 650_2 $$2MeSH$$aNeurons: metabolism
000139241 650_2 $$2MeSH$$aParvalbumins: metabolism
000139241 650_2 $$2MeSH$$aRats, Sprague-Dawley
000139241 650_2 $$2MeSH$$aSchizophrenia: chemically induced
000139241 650_2 $$2MeSH$$aSchizophrenia: metabolism
000139241 7001_ $$0P:(DE-2719)2811308$$aCurreli, Sebastiano$$b1$$udzne
000139241 7001_ $$0P:(DE-2719)2811394$$aKaushik, Rahul$$b2$$udzne
000139241 7001_ $$0P:(DE-HGF)0$$aBecker, Axel$$b3
000139241 7001_ $$0P:(DE-2719)2810577$$aDityatev, Alexander$$b4$$eLast author$$udzne
000139241 77318 $$2Crossref$$3journal-article$$a10.1016/j.neuroscience.2017.03.010$$b : Elsevier BV, 2017-05-01$$p13-22$$tNeuroscience$$v350$$x0306-4522$$y2017
000139241 773__ $$0PERI:(DE-600)1498423-4$$a10.1016/j.neuroscience.2017.03.010$$gVol. 350, p. 13 - 22$$p13-22$$q350<13 - 22$$tNeuroscience$$v350$$x0306-4522$$y2017
000139241 8564_ $$uhttps://pub.dzne.de/record/139241/files/DZNE-2020-05563_Restricted.pdf
000139241 8564_ $$uhttps://pub.dzne.de/record/139241/files/DZNE-2020-05563_Restricted.pdf?subformat=pdfa$$xpdfa
000139241 909CO $$ooai:pub.dzne.de:139241$$pVDB
000139241 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811109$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000139241 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811308$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000139241 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811394$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000139241 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810577$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000139241 9131_ $$0G:(DE-HGF)POF3-342$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vDisease Mechanisms and Model Systems$$x0
000139241 9141_ $$y2017
000139241 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-26$$wger
000139241 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROSCIENCE : 2021$$d2022-11-26
000139241 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-26
000139241 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-26
000139241 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-26
000139241 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-26
000139241 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-26
000139241 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-26
000139241 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-26
000139241 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-26
000139241 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-26
000139241 9201_ $$0I:(DE-2719)1310007$$kAG Dityatev$$lMolecular Neuroplasticity$$x0
000139241 9201_ $$0I:(DE-2719)1340007$$kCore Technical Staff$$lCore KAP (Kooperationseinheit Angewandte Präventionsforschung)$$x1
000139241 980__ $$ajournal
000139241 980__ $$aVDB
000139241 980__ $$aI:(DE-2719)1310007
000139241 980__ $$aI:(DE-2719)1340007
000139241 980__ $$aUNRESTRICTED