001     139241
005     20240321220601.0
024 7 _ |a 10.1016/j.neuroscience.2017.03.010
|2 doi
024 7 _ |a pmid:28323012
|2 pmid
024 7 _ |a 0306-4522
|2 ISSN
024 7 _ |a 1873-7544
|2 ISSN
024 7 _ |a altmetric:17795760
|2 altmetric
037 _ _ |a DZNE-2020-05563
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Matuszko, Gabriela
|0 P:(DE-2719)2811109
|b 0
|e First author
|u dzne
245 _ _ |a Extracellular matrix alterations in the ketamine model of schizophrenia.
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2017-05-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705913066_13656
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The neural extracellular matrix (ECM) plays an important role in regulation of perisomatic GABAergic inhibition and synaptic plasticity in the hippocampus and cortex. Decreased labeling of perineuronal nets, a form of ECM predominantly associated with parvalbumin-expressing interneurons in the brain, has been observed in post-mortem studies of schizophrenia patients, specifically, in brain areas such as prefrontal cortex, entorhinal cortex, and amygdala. Moreover, glial ECM in the form of dandelion clock-like structures was reported to be altered in schizophrenia patients. Here, we verified whether similar abnormalities in neural ECM can be reproduced in a rat model of schizophrenia, in which animals received sub-chronic administration of ketamine to reproduce the aspects of disease related to disrupted signaling through N-methyl-D-aspartate receptors. Our study focused on two schizophrenia-related brain areas, namely the medial prefrontal cortex (mPFC) and hippocampus. Semi-quantitative immunohistochemistry was performed to evaluate investigate ECM expression using Wisteria floribunda agglutinin (WFA) and CS56 antibody, both labeling distinct chondroitin sulfate epitopes enriched in perineuronal nets and glial ECM, respectively. Our analysis revealed that ketamine-treated rats exhibit reduced number of WFA-labeled perineuronal nets, and a decreased intensity of parvalbumin fluorescence in mPFC interneurons somata. Moreover, we found an increased expression of CS56 immunoreactive form of ECM. Importantly, the loss of perineuronal nets was revealed in the mPFC, and was not detected in the hippocampus, suggesting regional specificity of ECM alterations. These data open an avenue for further investigations of functional importance of ECM abnormalities in schizophrenia as well as for search of treatments for their compensation.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
542 _ _ |i 2017-05-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Parvalbumins
|2 NLM Chemicals
650 _ 7 |a Ketamine
|0 690G0D6V8H
|2 NLM Chemicals
650 _ 2 |a Amygdala: drug effects
|2 MeSH
650 _ 2 |a Amygdala: metabolism
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Extracellular Matrix: drug effects
|2 MeSH
650 _ 2 |a Extracellular Matrix: metabolism
|2 MeSH
650 _ 2 |a Hippocampus: drug effects
|2 MeSH
650 _ 2 |a Hippocampus: metabolism
|2 MeSH
650 _ 2 |a Immunohistochemistry: methods
|2 MeSH
650 _ 2 |a Ketamine: pharmacology
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Neuroglia: drug effects
|2 MeSH
650 _ 2 |a Neuroglia: metabolism
|2 MeSH
650 _ 2 |a Neurons: drug effects
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Parvalbumins: metabolism
|2 MeSH
650 _ 2 |a Rats, Sprague-Dawley
|2 MeSH
650 _ 2 |a Schizophrenia: chemically induced
|2 MeSH
650 _ 2 |a Schizophrenia: metabolism
|2 MeSH
700 1 _ |a Curreli, Sebastiano
|0 P:(DE-2719)2811308
|b 1
|u dzne
700 1 _ |a Kaushik, Rahul
|0 P:(DE-2719)2811394
|b 2
|u dzne
700 1 _ |a Becker, Axel
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dityatev, Alexander
|0 P:(DE-2719)2810577
|b 4
|e Last author
|u dzne
773 1 8 |a 10.1016/j.neuroscience.2017.03.010
|b : Elsevier BV, 2017-05-01
|p 13-22
|3 journal-article
|2 Crossref
|t Neuroscience
|v 350
|y 2017
|x 0306-4522
773 _ _ |a 10.1016/j.neuroscience.2017.03.010
|g Vol. 350, p. 13 - 22
|0 PERI:(DE-600)1498423-4
|q 350<13 - 22
|p 13-22
|t Neuroscience
|v 350
|y 2017
|x 0306-4522
856 4 _ |u https://pub.dzne.de/record/139241/files/DZNE-2020-05563_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/139241/files/DZNE-2020-05563_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:139241
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2811109
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811308
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2811394
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2810577
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms and Model Systems
|x 0
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-26
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROSCIENCE : 2021
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-26
920 1 _ |0 I:(DE-2719)1310007
|k AG Dityatev
|l Molecular Neuroplasticity
|x 0
920 1 _ |0 I:(DE-2719)1340007
|k Core Technical Staff
|l Core KAP (Kooperationseinheit Angewandte Präventionsforschung)
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1310007
980 _ _ |a I:(DE-2719)1340007
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21