001     139338
005     20240321220612.0
024 7 _ |a 10.1016/j.yexcr.2017.04.024
|2 doi
024 7 _ |a pmid:28442266
|2 pmid
024 7 _ |a 0014-4827
|2 ISSN
024 7 _ |a 1090-2422
|2 ISSN
024 7 _ |a altmetric:19627524
|2 altmetric
037 _ _ |a DZNE-2020-05660
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Jules, Felix
|b 0
245 _ _ |a CLN5 is cleaved by members of the SPP/SPPL family to produce a mature soluble protein.
260 _ _ |a Orlando, Fla.
|c 2017
|b Academic Press
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2017-08-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1588260886_17525
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Neuronal ceroid lipofuscinoses (NCLs) are a group of recessive disorders of childhood with overlapping symptoms including vision loss, ataxia, cognitive regression and premature death. 14 different genes have been linked to NCLs (CLN1-CLN14), but the functions of the proteins encoded by the majority of these genes have not been fully elucidated. Mutations in the CLN5 gene are responsible for the Finnish variant late-infantile form of NCL (Finnish vLINCL). CLN5 is translated as a 407 amino acid transmembrane domain containing protein that is heavily glycosylated, and subsequently cleaved into a mature soluble protein. Functionally, CLN5 is implicated in the recruitment of the retromer complex to endosomes, which is required to sort the lysosomal sorting receptors from endosomes to the trans-Golgi network. The mechanism that processes CLN5 into a mature soluble protein is currently not known. Herein, we demonstrate that CLN5 is initially translated as a type II transmembrane protein and subsequently cleaved by SPPL3, a member of the SPP/SPPL intramembrane protease family, into a mature soluble protein consisting of residues 93-407. The remaining N-terminal fragment is then cleaved by SPPL3 and SPPL2b and degraded in the proteasome. This work further characterizes the biology of CLN5 in the hopes of identifying a novel therapeutic strategy for affected children.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
542 _ _ |i 2017-08-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a CLN5 protein, human
|2 NLM Chemicals
650 _ 7 |a Membrane Proteins
|2 NLM Chemicals
650 _ 7 |a Aspartic Acid Endopeptidases
|0 EC 3.4.23.-
|2 NLM Chemicals
650 _ 2 |a Lysosome-Associated Membrane Glycoproteins
|2 MeSH
650 _ 2 |a Aspartic Acid Endopeptidases: metabolism
|2 MeSH
650 _ 2 |a Cell Line
|2 MeSH
650 _ 2 |a Endosomes: metabolism
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Lysosomes: metabolism
|2 MeSH
650 _ 2 |a Membrane Proteins: metabolism
|2 MeSH
650 _ 2 |a Neuronal Ceroid-Lipofuscinoses: metabolism
|2 MeSH
650 _ 2 |a Protein Transport
|2 MeSH
650 _ 2 |a Solubility
|2 MeSH
650 _ 2 |a trans-Golgi Network: metabolism
|2 MeSH
700 1 _ |a Sauvageau, Etienne
|b 1
700 1 _ |a Dumaresq-Doiron, Karine
|b 2
700 1 _ |a Mazzaferri, Javier
|b 3
700 1 _ |a Haug-Kröper, Martina
|b 4
700 1 _ |a Fluhrer, Regina
|0 P:(DE-2719)2000007
|b 5
|u dzne
700 1 _ |a Costantino, Santiago
|b 6
700 1 _ |a Lefrancois, Stephane
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 1 8 |a 10.1016/j.yexcr.2017.04.024
|b : Elsevier BV, 2017-08-01
|n 1
|p 40-50
|3 journal-article
|2 Crossref
|t Experimental Cell Research
|v 357
|y 2017
|x 0014-4827
773 _ _ |a 10.1016/j.yexcr.2017.04.024
|g Vol. 357, no. 1, p. 40 - 50
|0 PERI:(DE-600)1466780-0
|n 1
|q 357:1<40 - 50
|p 40-50
|t Experimental cell research
|v 357
|y 2017
|x 0014-4827
909 C O |o oai:pub.dzne.de:139338
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2000007
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|2 G:(DE-HGF)POF3-300
|v Disease Mechanisms and Model Systems
|x 0
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-15
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EXP CELL RES : 2021
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-15
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-15
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-15
920 1 _ |0 I:(DE-2719)1110000-2
|k AG Fluhrer
|l Signal Peptide Peptidases as Models for γ-Secretase
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1110000-2
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21