001     139495
005     20240321220629.0
024 7 _ |a 10.1016/j.nicl.2017.05.022
|2 doi
024 7 _ |a pmid:28652965
|2 pmid
024 7 _ |a pmc:PMC5476466
|2 pmc
024 7 _ |a altmetric:20598083
|2 altmetric
037 _ _ |a DZNE-2020-05817
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Berron, D.
|0 P:(DE-2719)2812972
|b 0
|e First author
245 _ _ |a A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI.
260 _ _ |a [Amsterdam u.a.]
|c 2017
|b Elsevier
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2017-01-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710340224_30567
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recent advances in MRI and increasing knowledge on the characterization and anatomical variability of medial temporal lobe (MTL) anatomy have paved the way for more specific subdivisions of the MTL in humans. In addition, recent studies suggest that early changes in many neurodegenerative and neuropsychiatric diseases are better detected in smaller subregions of the MTL rather than with whole structure analyses. Here, we developed a new protocol using 7 Tesla (T) MRI incorporating novel anatomical findings for the manual segmentation of entorhinal cortex (ErC), perirhinal cortex (PrC; divided into area 35 and 36), parahippocampal cortex (PhC), and hippocampus; which includes the subfields subiculum (Sub), CA1, CA2, as well as CA3 and dentate gyrus (DG) which are separated by the endfolial pathway covering most of the long axis of the hippocampus. We provide detailed instructions alongside slice-by-slice segmentations to ease learning for the untrained but also more experienced raters. Twenty-two subjects were scanned (19-32 yrs, mean age = 26 years, 12 females) with a turbo spin echo (TSE) T2-weighted MRI sequence with high-resolution oblique coronal slices oriented orthogonal to the long axis of the hippocampus (in-plane resolution 0.44 × 0.44 mm2) and 1.0 mm slice thickness. The scans were manually delineated by two experienced raters, to assess intra- and inter-rater reliability. The Dice Similarity Index (DSI) was above 0.78 for all regions and the Intraclass Correlation Coefficients (ICC) were between 0.76 to 0.99 both for intra- and inter-rater reliability. In conclusion, this study presents a fine-grained and comprehensive segmentation protocol for MTL structures at 7 T MRI that closely follows recent knowledge from anatomical studies. More specific subdivisions (e.g. area 35 and 36 in PrC, and the separation of DG and CA3) may pave the way for more precise delineations thereby enabling the detection of early volumetric changes in dementia and neuropsychiatric diseases.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
542 _ _ |i 2017-01-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2017-05-25
|2 Crossref
|u http://creativecommons.org/licenses/by-nc-nd/4.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Brain Mapping: methods
|2 MeSH
650 _ 2 |a Brain Mapping: standards
|2 MeSH
650 _ 2 |a Dentate Gyrus: diagnostic imaging
|2 MeSH
650 _ 2 |a Dentate Gyrus: physiology
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Hippocampus: diagnostic imaging
|2 MeSH
650 _ 2 |a Hippocampus: physiology
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: standards
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Temporal Lobe: diagnostic imaging
|2 MeSH
650 _ 2 |a Temporal Lobe: physiology
|2 MeSH
650 _ 2 |a Young Adult
|2 MeSH
700 1 _ |a Vieweg, P.
|0 P:(DE-2719)2810529
|b 1
700 1 _ |a Hochkeppler, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pluta, J. B.
|b 3
700 1 _ |a Ding, S-L
|b 4
700 1 _ |a Maaß, Anne
|0 P:(DE-2719)2811815
|b 5
|u dzne
700 1 _ |a Luther, A.
|0 P:(DE-2719)2321099
|b 6
700 1 _ |a Xie, L.
|b 7
700 1 _ |a Das, S. R.
|b 8
700 1 _ |a Wolk, D. A.
|b 9
700 1 _ |a Wolbers, T.
|0 P:(DE-2719)2810583
|b 10
700 1 _ |a Yushkevich, P. A.
|b 11
700 1 _ |a Düzel, E.
|0 P:(DE-2719)2000005
|b 12
700 1 _ |a Wisse, L. E. M.
|b 13
773 1 8 |a 10.1016/j.nicl.2017.05.022
|b : Elsevier BV, 2017-01-01
|p 466-482
|3 journal-article
|2 Crossref
|t NeuroImage: Clinical
|v 15
|y 2017
|x 2213-1582
773 _ _ |a 10.1016/j.nicl.2017.05.022
|g Vol. 15, p. 466 - 482
|0 PERI:(DE-600)2701571-3
|q 15<466 - 482
|p 466-482
|t NeuroImage: Clinical
|v 15
|y 2017
|x 2213-1582
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/139495/files/DZNE-2020-05817.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/139495/files/DZNE-2020-05817.pdf?subformat=pdfa
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476466
909 C O |o oai:pub.dzne.de:139495
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2812972
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2810529
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2811815
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2321099
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)2810583
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 12
|6 P:(DE-2719)2000005
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE-CLIN : 2021
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T10:57:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T10:57:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-10-13T10:57:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
920 1 _ |0 I:(DE-2719)5000006
|k AG Düzel
|l Clinical Neurophysiology and Memory
|x 0
920 1 _ |0 I:(DE-2719)1310002
|k AG Wolbers
|l Aging, Cognition and Technology
|x 1
920 1 _ |0 I:(DE-2719)1340007
|k Core Technical Staff
|l Core KAP (Kooperationseinheit Angewandte Präventionsforschung)
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)5000006
980 _ _ |a I:(DE-2719)1310002
980 _ _ |a I:(DE-2719)1340007
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21