000139724 001__ 139724
000139724 005__ 20241203165107.0
000139724 0247_ $$2doi$$a10.1016/j.cell.2017.11.034
000139724 0247_ $$2pmid$$apmid:29328910
000139724 0247_ $$2pmc$$apmc:PMC5766828
000139724 0247_ $$2ISSN$$a0092-8674
000139724 0247_ $$2ISSN$$a1097-4172
000139724 0247_ $$2altmetric$$aaltmetric:31556266
000139724 037__ $$aDZNE-2020-06046
000139724 041__ $$aEnglish
000139724 082__ $$a610
000139724 1001_ $$0P:(DE-HGF)0$$aMitroulis, Ioannis$$b0$$eCorresponding author
000139724 245__ $$aModulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity.
000139724 260__ $$aNew York, NY$$bElsevier$$c2018
000139724 264_1 $$2Crossref$$3print$$bElsevier BV$$c2018-01-01
000139724 3367_ $$2DRIVER$$aarticle
000139724 3367_ $$2DataCite$$aOutput Types/Journal article
000139724 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1733216676_30592
000139724 3367_ $$2BibTeX$$aARTICLE
000139724 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000139724 3367_ $$00$$2EndNote$$aJournal Article
000139724 520__ $$aTrained innate immunity fosters a sustained favorable response of myeloid cells to a secondary challenge, despite their short lifespan in circulation. We thus hypothesized that trained immunity acts via modulation of hematopoietic stem and progenitor cells (HSPCs). Administration of β-glucan (prototypical trained-immunity-inducing agonist) to mice induced expansion of progenitors of the myeloid lineage, which was associated with elevated signaling by innate immune mediators, such as IL-1β and granulocyte-macrophage colony-stimulating factor (GM-CSF), and with adaptations in glucose metabolism and cholesterol biosynthesis. The trained-immunity-related increase in myelopoiesis resulted in a beneficial response to secondary LPS challenge and protection from chemotherapy-induced myelosuppression in mice. Therefore, modulation of myeloid progenitors in the bone marrow is an integral component of trained immunity, which to date, was considered to involve functional changes of mature myeloid cells in the periphery.
000139724 536__ $$0G:(DE-HGF)POF3-341$$a341 - Molecular Signaling (POF3-341)$$cPOF3-341$$fPOF III$$x0
000139724 536__ $$0G:(DE-HGF)POF3-342$$a342 - Disease Mechanisms and Model Systems (POF3-342)$$cPOF3-342$$fPOF III$$x1
000139724 542__ $$2Crossref$$i2018-01-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000139724 542__ $$2Crossref$$i2017-11-20$$uhttp://creativecommons.org/licenses/by-nc-nd/4.0/
000139724 588__ $$aDataset connected to CrossRef, PubMed,
000139724 650_7 $$2NLM Chemicals$$aInterleukin-1beta
000139724 650_7 $$2NLM Chemicals$$abeta-Glucans
000139724 650_7 $$083869-56-1$$2NLM Chemicals$$aGranulocyte-Macrophage Colony-Stimulating Factor
000139724 650_2 $$2MeSH$$aAnimals
000139724 650_2 $$2MeSH$$aCells, Cultured
000139724 650_2 $$2MeSH$$aGranulocyte-Macrophage Colony-Stimulating Factor: metabolism
000139724 650_2 $$2MeSH$$aImmunity, Innate
000139724 650_2 $$2MeSH$$aImmunologic Memory
000139724 650_2 $$2MeSH$$aInterleukin-1beta: metabolism
000139724 650_2 $$2MeSH$$aMale
000139724 650_2 $$2MeSH$$aMice
000139724 650_2 $$2MeSH$$aMice, Inbred C57BL
000139724 650_2 $$2MeSH$$aMyeloid Progenitor Cells: drug effects
000139724 650_2 $$2MeSH$$aMyeloid Progenitor Cells: immunology
000139724 650_2 $$2MeSH$$aMyelopoiesis: immunology
000139724 650_2 $$2MeSH$$abeta-Glucans: pharmacology
000139724 693__ $$0EXP:(DE-2719)PRECISE-20190321$$5EXP:(DE-2719)PRECISE-20190321$$ePlatform for Single Cell Genomics and Epigenomics at DZNE  University of Bonn$$x0
000139724 7001_ $$aRuppova, Klara$$b1
000139724 7001_ $$aWang, Baomei$$b2
000139724 7001_ $$aChen, Lan-Sun$$b3
000139724 7001_ $$aGrzybek, Michal$$b4
000139724 7001_ $$aGrinenko, Tatyana$$b5
000139724 7001_ $$aEugster, Anne$$b6
000139724 7001_ $$aTroullinaki, Maria$$b7
000139724 7001_ $$aPalladini, Alessandra$$b8
000139724 7001_ $$aKourtzelis, Ioannis$$b9
000139724 7001_ $$aChatzigeorgiou, Antonios$$b10
000139724 7001_ $$0P:(DE-HGF)0$$aSchlitzer, Andreas$$b11
000139724 7001_ $$0P:(DE-2719)2812219$$aBeyer, Marc$$b12$$udzne
000139724 7001_ $$aJoosten, Leo A B$$b13
000139724 7001_ $$aIsermann, Berend$$b14
000139724 7001_ $$aLesche, Mathias$$b15
000139724 7001_ $$aPetzold, Andreas$$b16
000139724 7001_ $$aSimons, Kai$$b17
000139724 7001_ $$aHenry, Ian$$b18
000139724 7001_ $$aDahl, Andreas$$b19
000139724 7001_ $$0P:(DE-2719)2811660$$aSchultze, Joachim L$$b20$$udzne
000139724 7001_ $$aWielockx, Ben$$b21
000139724 7001_ $$aZamboni, Nicola$$b22
000139724 7001_ $$aMirtschink, Peter$$b23
000139724 7001_ $$aCoskun, Ünal$$b24
000139724 7001_ $$aHajishengallis, George$$b25
000139724 7001_ $$aNetea, Mihai G$$b26
000139724 7001_ $$aChavakis, Triantafyllos$$b27
000139724 77318 $$2Crossref$$3journal-article$$a10.1016/j.cell.2017.11.034$$b : Elsevier BV, 2018-01-01$$n1-2$$p147-161.e12$$tCell$$v172$$x0092-8674$$y2018
000139724 773__ $$0PERI:(DE-600)2001951-8$$a10.1016/j.cell.2017.11.034$$gVol. 172, no. 1-2, p. 147 - 161.e12$$n1-2$$p147-161.e12$$q172:1-2<147 - 161.e12$$tCell$$v172$$x0092-8674$$y2018
000139724 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766828
000139724 8564_ $$uhttps://pub.dzne.de/record/139724/files/DZNE-2020-06046.pdf$$yOpenAccess
000139724 8564_ $$uhttps://pub.dzne.de/record/139724/files/DZNE-2020-06046.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000139724 909CO $$ooai:pub.dzne.de:139724$$pdnbdelivery$$pdriver$$popenaire$$pVDB$$popen_access
000139724 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812219$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b12$$kDZNE
000139724 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811660$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b20$$kDZNE
000139724 9131_ $$0G:(DE-HGF)POF3-341$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vMolecular Signaling$$x0
000139724 9131_ $$0G:(DE-HGF)POF3-342$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vDisease Mechanisms and Model Systems$$x1
000139724 9141_ $$y2018
000139724 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000139724 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-09
000139724 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-09
000139724 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000139724 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL : 2021$$d2022-11-09
000139724 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000139724 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-09
000139724 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000139724 915__ $$0StatID:(DE-HGF)9960$$2StatID$$aIF >= 60$$bCELL : 2021$$d2022-11-09
000139724 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-09
000139724 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000139724 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-09$$wger
000139724 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000139724 9201_ $$0I:(DE-2719)1013031$$kPRECISE$$lPlatform for Single Cell Genomics and Epigenomics$$x0
000139724 9201_ $$0I:(DE-2719)1013038$$kAG Schultze$$lClinical Single Cell Omics (CSCO) / Systems Medicine$$x1
000139724 9201_ $$0I:(DE-2719)1013035$$kAG Beyer$$lImmunogenomics and Neurodegeneration$$x2
000139724 980__ $$ajournal
000139724 980__ $$aVDB
000139724 980__ $$aI:(DE-2719)1013031
000139724 980__ $$aI:(DE-2719)1013038
000139724 980__ $$aI:(DE-2719)1013035
000139724 980__ $$aUNRESTRICTED
000139724 9801_ $$aFullTexts