000139900 001__ 139900
000139900 005__ 20240321220715.0
000139900 0247_ $$2ISSN$$a2211-1247
000139900 0247_ $$2doi$$a10.1016/j.celrep.2018.03.059
000139900 0247_ $$2pmid$$apmid:29642011
000139900 0247_ $$2pmc$$apmc:PMC5912949
000139900 0247_ $$2altmetric$$aaltmetric:36203027
000139900 0247_ $$2ISSN$$a2639-1856
000139900 037__ $$aDZNE-2020-06222
000139900 041__ $$aEnglish
000139900 082__ $$a610
000139900 1001_ $$0P:(DE-2719)2810482$$aBenito, Eva$$b0$$eFirst author$$udzne
000139900 245__ $$aRNA-Dependent Intergenerational Inheritance of Enhanced Synaptic Plasticity after Environmental Enrichment.
000139900 260__ $$a[New York, NY]$$bElsevier$$c2018
000139900 264_1 $$2Crossref$$3print$$bElsevier BV$$c2018-04-01
000139900 3367_ $$2DRIVER$$aarticle
000139900 3367_ $$2DataCite$$aOutput Types/Journal article
000139900 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710168262_27993
000139900 3367_ $$2BibTeX$$aARTICLE
000139900 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000139900 3367_ $$00$$2EndNote$$aJournal Article
000139900 520__ $$aPhysical exercise in combination with cognitive training is known to enhance synaptic plasticity, learning, and memory and lower the risk for various complex diseases including Alzheimer's disease. Here, we show that exposure of adult male mice to an environmental enrichment paradigm leads to enhancement of synaptic plasticity and cognition also in the next generation. We show that this effect is mediated through sperm RNA and especially miRs 212/132. In conclusion, our study reports intergenerational inheritance of an acquired cognitive benefit and points to specific miRs as candidates mechanistically involved in this type of transmission.
000139900 536__ $$0G:(DE-HGF)POF3-342$$a342 - Disease Mechanisms and Model Systems (POF3-342)$$cPOF3-342$$fPOF III$$x0
000139900 542__ $$2Crossref$$i2018-04-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000139900 542__ $$2Crossref$$i2018-03-15$$uhttp://creativecommons.org/licenses/by/4.0/
000139900 588__ $$aDataset connected to CrossRef, PubMed,
000139900 650_7 $$2NLM Chemicals$$aMIRN132 microRNA, rat
000139900 650_7 $$2NLM Chemicals$$aMIRN212 microRNA, rat
000139900 650_7 $$2NLM Chemicals$$aMicroRNAs
000139900 650_7 $$063231-63-0$$2NLM Chemicals$$aRNA
000139900 650_2 $$2MeSH$$aAnimals
000139900 650_2 $$2MeSH$$aBehavior, Animal
000139900 650_2 $$2MeSH$$aBrain: metabolism
000139900 650_2 $$2MeSH$$aCognition: physiology
000139900 650_2 $$2MeSH$$aExcitatory Postsynaptic Potentials
000139900 650_2 $$2MeSH$$aHippocampus: physiology
000139900 650_2 $$2MeSH$$aMale
000139900 650_2 $$2MeSH$$aMice
000139900 650_2 $$2MeSH$$aMice, Inbred C57BL
000139900 650_2 $$2MeSH$$aMicroRNAs: chemistry
000139900 650_2 $$2MeSH$$aMicroRNAs: metabolism
000139900 650_2 $$2MeSH$$aNeuronal Plasticity: physiology
000139900 650_2 $$2MeSH$$aPhysical Conditioning, Animal
000139900 650_2 $$2MeSH$$aRNA: chemistry
000139900 650_2 $$2MeSH$$aRNA: isolation & purification
000139900 650_2 $$2MeSH$$aRNA: metabolism
000139900 650_2 $$2MeSH$$aSequence Analysis, RNA
000139900 650_2 $$2MeSH$$aSocial Environment
000139900 650_2 $$2MeSH$$aSpermatozoa: metabolism
000139900 7001_ $$0P:(DE-2719)2812366$$aKerimoglu, Cemil$$b1$$udzne
000139900 7001_ $$0P:(DE-HGF)0$$aRamachandran, Binu$$b2
000139900 7001_ $$0P:(DE-2719)2811063$$aPena Centeno, Tonatiuh$$b3$$udzne
000139900 7001_ $$0P:(DE-2719)2811223$$aJain, Gaurav$$b4$$udzne
000139900 7001_ $$0P:(DE-2719)9000302$$aStilling, Roman Manuel$$b5$$udzne
000139900 7001_ $$0P:(DE-2719)2811643$$aIslam, Rezaul$$b6$$udzne
000139900 7001_ $$0P:(DE-2719)2810626$$aCapece, Vincenzo$$b7$$udzne
000139900 7001_ $$0P:(DE-2719)2811347$$aZhou, Qihui$$b8$$udzne
000139900 7001_ $$0P:(DE-2719)2231621$$aEdbauer, Dieter$$b9$$udzne
000139900 7001_ $$0P:(DE-HGF)0$$aDean, Camin$$b10
000139900 7001_ $$0P:(DE-2719)2000047$$aFischer, André$$b11$$eLast author$$udzne
000139900 77318 $$2Crossref$$3journal-article$$a10.1016/j.celrep.2018.03.059$$b : Elsevier BV, 2018-04-01$$n2$$p546-554$$tCell Reports$$v23$$x2211-1247$$y2018
000139900 773__ $$0PERI:(DE-600)2649101-1$$a10.1016/j.celrep.2018.03.059$$gVol. 23, no. 2, p. 546 - 554$$n2$$p546-554$$q23:2<546 - 554$$tCell reports$$v23$$x2211-1247$$y2018
000139900 8564_ $$uhttps://pub.dzne.de/record/139900/files/DZNE-2020-06222.pdf$$yOpenAccess
000139900 8564_ $$uhttps://pub.dzne.de/record/139900/files/DZNE-2020-06222.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000139900 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912949
000139900 909CO $$ooai:pub.dzne.de:139900$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000139900 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810482$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000139900 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812366$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000139900 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811063$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000139900 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811223$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000139900 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000302$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000139900 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811643$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000139900 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810626$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE
000139900 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811347$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000139900 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2231621$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000139900 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000047$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b11$$kDZNE
000139900 9131_ $$0G:(DE-HGF)POF3-342$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vDisease Mechanisms and Model Systems$$x0
000139900 9141_ $$y2018
000139900 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000139900 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-17
000139900 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000139900 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL REP : 2021$$d2022-11-17
000139900 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-26T13:08:57Z
000139900 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-26T13:08:57Z
000139900 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000139900 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000139900 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-26T13:08:57Z
000139900 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL REP : 2021$$d2022-11-17
000139900 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000139900 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000139900 9201_ $$0I:(DE-2719)1410002$$kAG Fischer$$lEpigenetics and Systems Medicine in Neurodegenerative Diseases$$x0
000139900 9201_ $$0I:(DE-2719)1110004$$kAG Edbauer$$lCell Biology of Neurodegeneration$$x1
000139900 9201_ $$0I:(DE-2719)1440016$$kBioinformatics and Genome Dynamics Core$$lBioinformatics and Genome Dynamics Core$$x2
000139900 9201_ $$0I:(DE-2719)6000014$$kGöttingen common$$lGöttingen common$$x3
000139900 9201_ $$0I:(DE-2719)1440012$$kAG Bonn 2$$lComputational Systems Biology$$x4
000139900 9201_ $$0I:(DE-2719)5000080$$kAG Zhou$$lAdaptive Immunity in Neurodegeneration$$x5
000139900 980__ $$ajournal
000139900 980__ $$aVDB
000139900 980__ $$aUNRESTRICTED
000139900 980__ $$aI:(DE-2719)1410002
000139900 980__ $$aI:(DE-2719)1110004
000139900 980__ $$aI:(DE-2719)1440016
000139900 980__ $$aI:(DE-2719)6000014
000139900 980__ $$aI:(DE-2719)1440012
000139900 980__ $$aI:(DE-2719)5000080
000139900 9801_ $$aFullTexts