001     139900
005     20240321220715.0
024 7 _ |a 2211-1247
|2 ISSN
024 7 _ |a 10.1016/j.celrep.2018.03.059
|2 doi
024 7 _ |a pmid:29642011
|2 pmid
024 7 _ |a pmc:PMC5912949
|2 pmc
024 7 _ |a altmetric:36203027
|2 altmetric
024 7 _ |a 2639-1856
|2 ISSN
037 _ _ |a DZNE-2020-06222
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Benito, Eva
|0 P:(DE-2719)2810482
|b 0
|e First author
|u dzne
245 _ _ |a RNA-Dependent Intergenerational Inheritance of Enhanced Synaptic Plasticity after Environmental Enrichment.
260 _ _ |a [New York, NY]
|c 2018
|b Elsevier
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2018-04-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710168262_27993
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Physical exercise in combination with cognitive training is known to enhance synaptic plasticity, learning, and memory and lower the risk for various complex diseases including Alzheimer's disease. Here, we show that exposure of adult male mice to an environmental enrichment paradigm leads to enhancement of synaptic plasticity and cognition also in the next generation. We show that this effect is mediated through sperm RNA and especially miRs 212/132. In conclusion, our study reports intergenerational inheritance of an acquired cognitive benefit and points to specific miRs as candidates mechanistically involved in this type of transmission.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
542 _ _ |i 2018-04-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2018-03-15
|2 Crossref
|u http://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a MIRN132 microRNA, rat
|2 NLM Chemicals
650 _ 7 |a MIRN212 microRNA, rat
|2 NLM Chemicals
650 _ 7 |a MicroRNAs
|2 NLM Chemicals
650 _ 7 |a RNA
|0 63231-63-0
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Behavior, Animal
|2 MeSH
650 _ 2 |a Brain: metabolism
|2 MeSH
650 _ 2 |a Cognition: physiology
|2 MeSH
650 _ 2 |a Excitatory Postsynaptic Potentials
|2 MeSH
650 _ 2 |a Hippocampus: physiology
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a MicroRNAs: chemistry
|2 MeSH
650 _ 2 |a MicroRNAs: metabolism
|2 MeSH
650 _ 2 |a Neuronal Plasticity: physiology
|2 MeSH
650 _ 2 |a Physical Conditioning, Animal
|2 MeSH
650 _ 2 |a RNA: chemistry
|2 MeSH
650 _ 2 |a RNA: isolation & purification
|2 MeSH
650 _ 2 |a RNA: metabolism
|2 MeSH
650 _ 2 |a Sequence Analysis, RNA
|2 MeSH
650 _ 2 |a Social Environment
|2 MeSH
650 _ 2 |a Spermatozoa: metabolism
|2 MeSH
700 1 _ |a Kerimoglu, Cemil
|0 P:(DE-2719)2812366
|b 1
|u dzne
700 1 _ |a Ramachandran, Binu
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pena Centeno, Tonatiuh
|0 P:(DE-2719)2811063
|b 3
|u dzne
700 1 _ |a Jain, Gaurav
|0 P:(DE-2719)2811223
|b 4
|u dzne
700 1 _ |a Stilling, Roman Manuel
|0 P:(DE-2719)9000302
|b 5
|u dzne
700 1 _ |a Islam, Rezaul
|0 P:(DE-2719)2811643
|b 6
|u dzne
700 1 _ |a Capece, Vincenzo
|0 P:(DE-2719)2810626
|b 7
|u dzne
700 1 _ |a Zhou, Qihui
|0 P:(DE-2719)2811347
|b 8
|u dzne
700 1 _ |a Edbauer, Dieter
|0 P:(DE-2719)2231621
|b 9
|u dzne
700 1 _ |a Dean, Camin
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Fischer, André
|0 P:(DE-2719)2000047
|b 11
|e Last author
|u dzne
773 1 8 |a 10.1016/j.celrep.2018.03.059
|b : Elsevier BV, 2018-04-01
|n 2
|p 546-554
|3 journal-article
|2 Crossref
|t Cell Reports
|v 23
|y 2018
|x 2211-1247
773 _ _ |a 10.1016/j.celrep.2018.03.059
|g Vol. 23, no. 2, p. 546 - 554
|0 PERI:(DE-600)2649101-1
|n 2
|q 23:2<546 - 554
|p 546-554
|t Cell reports
|v 23
|y 2018
|x 2211-1247
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/139900/files/DZNE-2020-06222.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/139900/files/DZNE-2020-06222.pdf?subformat=pdfa
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912949
909 C O |o oai:pub.dzne.de:139900
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2810482
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2812366
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2811063
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2811223
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)9000302
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2811643
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810626
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2811347
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2231621
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)2000047
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms and Model Systems
|x 0
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-17
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-26T13:08:57Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-26T13:08:57Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-26T13:08:57Z
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL REP : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
920 1 _ |0 I:(DE-2719)1410002
|k AG Fischer
|l Epigenetics and Systems Medicine in Neurodegenerative Diseases
|x 0
920 1 _ |0 I:(DE-2719)1110004
|k AG Edbauer
|l Cell Biology of Neurodegeneration
|x 1
920 1 _ |0 I:(DE-2719)1440016
|k Bioinformatics and Genome Dynamics Core
|l Bioinformatics and Genome Dynamics Core
|x 2
920 1 _ |0 I:(DE-2719)6000014
|k Göttingen common
|l Göttingen common
|x 3
920 1 _ |0 I:(DE-2719)1440012
|k AG Bonn 2
|l Computational Systems Biology
|x 4
920 1 _ |0 I:(DE-2719)5000080
|k AG Zhou
|l Adaptive Immunity in Neurodegeneration
|x 5
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1410002
980 _ _ |a I:(DE-2719)1110004
980 _ _ |a I:(DE-2719)1440016
980 _ _ |a I:(DE-2719)6000014
980 _ _ |a I:(DE-2719)1440012
980 _ _ |a I:(DE-2719)5000080
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21