001     139981
005     20240529141903.0
024 7 _ |a 10.1016/j.neuroimage.2018.04.059
|2 doi
024 7 _ |a pmid:29723641
|2 pmid
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a altmetric:40641953
|2 altmetric
037 _ _ |a DZNE-2020-06303
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Brocka, Marta
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Contributions of dopaminergic and non-dopaminergic neurons to VTA-stimulation induced neurovascular responses in brain reward circuits.
260 _ _ |a Orlando, Fla.
|c 2018
|b Academic Press
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2018-08-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1685007335_32155
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mapping the activity of the human mesolimbic dopamine system by BOLD-fMRI is a tempting approach to non-invasively study the action of the brain reward system during different experimental conditions. However, the contribution of dopamine release to the BOLD signal is disputed. To assign the actual contribution of dopaminergic and non-dopaminergic VTA neurons to the formation of BOLD responses in target regions of the mesolimbic system, we used two optogenetic approaches in rats. We either activated VTA dopaminergic neurons selectively, or dopaminergic and mainly glutamatergic projecting neurons together. We further used electrical stimulation to non-selectively activate neurons in the VTA. All three stimulation conditions effectively activated the mesolimbic dopaminergic system and triggered dopamine releases into the NAcc as measured by in vivo fast-scan cyclic voltammetry. Furthermore, both optogenetic stimulation paradigms led to indistinguishable self-stimulation behavior. In contrast to these similarities, however, the BOLD response pattern differed greatly between groups. In general, BOLD responses were weaker and sparser with increasing stimulation specificity for dopaminergic neurons. In addition, repetitive stimulation of the VTA caused a progressive decoupling of dopamine release and BOLD signal strength, and dopamine receptor antagonists were unable to block the BOLD signal elicited by VTA stimulation. To exclude that the sedation during fMRI is the cause of minimal mesolimbic BOLD in response to specific dopaminergic stimulation, we repeated our experiments using CBF SPECT in awake animals. Again, we found activations only for less-specific stimulation. Based on these results we conclude that canonical BOLD responses in the reward system represent mainly the activity of non-dopaminergic neurons. Thus, the minor effects of projecting dopaminergic neurons are concealed by non-dopaminergic activity, a finding which highlights the importance of a careful interpretation of reward-related human fMRI data.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
542 _ _ |i 2018-08-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2018-05-08
|2 Crossref
|u http://creativecommons.org/licenses/by-nc-nd/4.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Dopamine Antagonists
|2 NLM Chemicals
650 _ 7 |a Dopamine
|0 VTD58H1Z2X
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Behavior, Animal: physiology
|2 MeSH
650 _ 2 |a Brain: diagnostic imaging
|2 MeSH
650 _ 2 |a Brain: metabolism
|2 MeSH
650 _ 2 |a Brain: physiology
|2 MeSH
650 _ 2 |a Dopamine: metabolism
|2 MeSH
650 _ 2 |a Dopamine Antagonists: pharmacology
|2 MeSH
650 _ 2 |a Dopaminergic Neurons: physiology
|2 MeSH
650 _ 2 |a Electric Stimulation
|2 MeSH
650 _ 2 |a Electrodes, Implanted
|2 MeSH
650 _ 2 |a Genetic Vectors
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Neurons: physiology
|2 MeSH
650 _ 2 |a Neurovascular Coupling: physiology
|2 MeSH
650 _ 2 |a Optogenetics
|2 MeSH
650 _ 2 |a Rats
|2 MeSH
650 _ 2 |a Rats, Long-Evans
|2 MeSH
650 _ 2 |a Rats, Transgenic
|2 MeSH
650 _ 2 |a Rats, Wistar
|2 MeSH
650 _ 2 |a Reward
|2 MeSH
650 _ 2 |a Self Stimulation: physiology
|2 MeSH
650 _ 2 |a Stereotaxic Techniques
|2 MeSH
650 _ 2 |a Tomography, Emission-Computed, Single-Photon
|2 MeSH
650 _ 2 |a Ventral Tegmental Area: diagnostic imaging
|2 MeSH
650 _ 2 |a Ventral Tegmental Area: metabolism
|2 MeSH
650 _ 2 |a Ventral Tegmental Area: physiology
|2 MeSH
700 1 _ |a Helbing, Cornelia
|0 P:(DE-2719)2811369
|b 1
|u dzne
700 1 _ |a Vincenz, Daniel
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Scherf, Thomas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Montag, Dirk
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Goldschmidt, Jürgen
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Angenstein, Frank
|0 P:(DE-2719)2810456
|b 6
|u dzne
700 1 _ |a Lippert, Michael
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 1 8 |a 10.1016/j.neuroimage.2018.04.059
|b : Elsevier BV, 2018-08-01
|p 88-97
|3 journal-article
|2 Crossref
|t NeuroImage
|v 177
|y 2018
|x 1053-8119
773 _ _ |a 10.1016/j.neuroimage.2018.04.059
|g Vol. 177, p. 88 - 97
|0 PERI:(DE-600)1471418-8
|q 177<88 - 97
|p 88-97
|t NeuroImage
|v 177
|y 2018
|x 1053-8119
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/139981/files/DZNE-2020-06303.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/139981/files/DZNE-2020-06303.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:139981
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811369
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2810456
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2018
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-27T20:29:23Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-09-27T20:29:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2021
|d 2022-11-12
920 1 _ |0 I:(DE-2719)1310004
|k AG Angenstein
|l Functional Neuroimaging
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1310004
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21