001     140030
005     20240321220730.0
024 7 _ |a 10.1016/j.expneurol.2018.04.014
|2 doi
024 7 _ |a pmid:29715474
|2 pmid
024 7 _ |a 0014-4886
|2 ISSN
024 7 _ |a 1090-2430
|2 ISSN
024 7 _ |a altmetric:40780593
|2 altmetric
037 _ _ |a DZNE-2020-06352
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Boehmerle, Wolfgang
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a TRPV4 inhibition prevents paclitaxel-induced neurotoxicity in preclinical models.
260 _ _ |a Orlando, Fla.
|c 2018
|b Academic Press
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2018-08-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1591099666_4414
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Paclitaxel is a cytotoxic drug which frequently causes sensory peripheral neuropathy in patients. Increasing evidence suggests that altered intracellular calcium (Ca2+) signals play an important role in the pathogenesis of this condition. In the present study, we examined the interplay between Ca2+ release channels in the endoplasmic reticulum (ER) and Ca2+ permeable channels in the plasma membrane in the context of paclitaxel mediated neurotoxicity. We observed that in small to medium size dorsal root ganglia neurons (DRGN) the inositol-trisphosphate receptor (InsP3R) type 1 was often concentrated in the periphery of cells, which is in contrast to homogenous ER distribution. G protein-coupled designer receptors were used to further elucidate phosphoinositide mediated Ca2+ signaling: This approach showed strong InsP3 mediated Ca2+ signals close to the plasma membrane, which can be amplified by Ca2+ entry through TRPV4 channels. In addition, our results support a physical interaction and partial colocalization of InsP3R1 and TRPV4 channels. In the context of paclitaxel-induced neurotoxicity, blocking Ca2+ influx through TRPV4 channels reduced cell death in cultured DRGN. Pretreatment of mice with the pharmacological TRPV4 inhibitor HC067047 prior to paclitaxel injections prevented electrophysiological and behavioral changes associated with paclitaxel-induced neuropathy. In summary, these results underline the relevance of TRPV4 signaling for the pathogenesis of paclitaxel-induced neuropathy and suggest novel preventive strategies.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
542 _ _ |i 2018-08-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Antineoplastic Agents, Phytogenic
|2 NLM Chemicals
650 _ 7 |a Calcium Channels
|2 NLM Chemicals
650 _ 7 |a Inositol 1,4,5-Trisphosphate Receptors
|2 NLM Chemicals
650 _ 7 |a TRPV Cation Channels
|2 NLM Chemicals
650 _ 7 |a Trpv4 protein, mouse
|2 NLM Chemicals
650 _ 7 |a Trpv4 protein, rat
|2 NLM Chemicals
650 _ 7 |a Paclitaxel
|0 P88XT4IS4D
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Antineoplastic Agents, Phytogenic: toxicity
|2 MeSH
650 _ 2 |a Calcium Channels: drug effects
|2 MeSH
650 _ 2 |a Calcium Channels: metabolism
|2 MeSH
650 _ 2 |a Calcium Signaling: drug effects
|2 MeSH
650 _ 2 |a Cell Death: drug effects
|2 MeSH
650 _ 2 |a Cell Membrane: drug effects
|2 MeSH
650 _ 2 |a Cell Membrane: metabolism
|2 MeSH
650 _ 2 |a Endoplasmic Reticulum: drug effects
|2 MeSH
650 _ 2 |a Endoplasmic Reticulum: metabolism
|2 MeSH
650 _ 2 |a Ganglia, Spinal: pathology
|2 MeSH
650 _ 2 |a Immunohistochemistry
|2 MeSH
650 _ 2 |a Inositol 1,4,5-Trisphosphate Receptors: genetics
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Neurotoxicity Syndromes: pathology
|2 MeSH
650 _ 2 |a Neurotoxicity Syndromes: prevention & control
|2 MeSH
650 _ 2 |a Paclitaxel: toxicity
|2 MeSH
650 _ 2 |a Rats
|2 MeSH
650 _ 2 |a Rats, Wistar
|2 MeSH
650 _ 2 |a TRPV Cation Channels: antagonists & inhibitors
|2 MeSH
650 _ 2 |a Transfection
|2 MeSH
700 1 _ |a Huehnchen, Petra
|b 1
700 1 _ |a Lee, Sabrina Lin Lin
|b 2
700 1 _ |a Harms, Christoph
|b 3
700 1 _ |a Endres, Matthias
|0 P:(DE-2719)2811033
|b 4
|e Last author
|u dzne
773 1 8 |a 10.1016/j.expneurol.2018.04.014
|b : Elsevier BV, 2018-08-01
|p 64-75
|3 journal-article
|2 Crossref
|t Experimental Neurology
|v 306
|y 2018
|x 0014-4886
773 _ _ |a 10.1016/j.expneurol.2018.04.014
|g Vol. 306, p. 64 - 75
|0 PERI:(DE-600)1466932-8
|q 306<64 - 75
|p 64-75
|t Experimental neurology
|v 306
|y 2018
|x 0014-4886
909 C O |o oai:pub.dzne.de:140030
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2811033
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|2 G:(DE-HGF)POF3-300
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-10
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EXP NEUROL : 2021
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EXP NEUROL : 2021
|d 2022-11-10
920 1 _ |0 I:(DE-2719)1811005
|k AG Endres
|l Coordinator of Clinical Research
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1811005
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21