001     140053
005     20240504120051.0
024 7 _ |a 10.1038/s41598-018-28487-7
|2 doi
024 7 _ |a pmid:29977007
|2 pmid
024 7 _ |a pmc:PMC6033850
|2 pmc
024 7 _ |a altmetric:44510349
|2 altmetric
037 _ _ |a DZNE-2020-06375
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Müller, Notger G
|0 P:(DE-2719)2191623
|b 0
|e First author
|u dzne
245 _ _ |a Repetitive transcranial magnetic stimulation reveals a causal role of the human precuneus in spatial updating.
260 _ _ |a [London]
|c 2018
|b Macmillan Publishers Limited, part of Springer Nature
264 _ 1 |3 online
|2 Crossref
|b Springer Science and Business Media LLC
|c 2018-07-05
264 _ 1 |3 print
|2 Crossref
|b Springer Science and Business Media LLC
|c 2018-12-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714743973_32
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a As we move through an environment, the positions of surrounding objects relative to our body constantly change, with some objects even leaving our field of view. As a consequence, maintaining orientation requires spatial updating, the continuous monitoring of self-motion cues to update external locations within an egocentric frame of reference. While previous research using functional magnetic resonance imaging has implicated the precuneus in spatial updating, direct evidence for this claim is missing. To address this important question, we applied theta burst repetitive transcranial magnetic stimulation (rTMS) over the precuneus to induce a 'virtual lesion'. Following stimulation, participants were tested in a large-scale virtual environment in which they had to use visual self-motion information to keep track of the position of virtual objects. Compared to sham stimulation, rTMS affected working memory traces for object locations. Critically, rTMS further impaired the ability to update these locations whenever participants experienced simulated movement. As this effect could not be explained by working memory deficits alone, we conclude that visual spatial updating relies on the construction of updated representations of egocentric object locations within the precuneus. Together, these findings establish the precuneus as performing key computations for the formation of cognitive maps.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
542 _ _ |i 2018-07-05
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Parietal Lobe: physiology
|2 MeSH
650 _ 2 |a Space Perception: physiology
|2 MeSH
650 _ 2 |a Task Performance and Analysis
|2 MeSH
650 _ 2 |a Transcranial Magnetic Stimulation
|2 MeSH
650 _ 2 |a Young Adult
|2 MeSH
700 1 _ |a Riemer, Martin
|0 P:(DE-2719)2813753
|b 1
|u dzne
700 1 _ |a Brandt, Lisa
|0 P:(DE-2719)2811435
|b 2
|u dzne
700 1 _ |a Wolbers, Thomas
|0 P:(DE-2719)2810583
|b 3
|e Last author
|u dzne
773 1 8 |a 10.1038/s41598-018-28487-7
|b : Springer Science and Business Media LLC, 2018-07-05
|n 1
|p 10171
|3 journal-article
|2 Crossref
|t Scientific Reports
|v 8
|y 2018
|x 2045-2322
773 _ _ |a 10.1038/s41598-018-28487-7
|g Vol. 8, no. 1, p. 10171
|0 PERI:(DE-600)2615211-3
|n 1
|q 8:1<10171
|p 10171
|t Scientific reports
|v 8
|y 2018
|x 2045-2322
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/140053/files/DZNE-2020-06375.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/140053/files/DZNE-2020-06375.pdf?subformat=pdfa
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033850
909 C O |o oai:pub.dzne.de:140053
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2191623
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2813753
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2811435
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2810583
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-03-30
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-03-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2021
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-08T09:38:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-08T09:38:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-03-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-03-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-03-30
920 1 _ |0 I:(DE-2719)1310003
|k AG Müller
|l Neuroprotection
|x 0
920 1 _ |0 I:(DE-2719)1310002
|k AG Wolbers
|l Aging, Cognition and Technology
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1310003
980 _ _ |a I:(DE-2719)1310002
980 1 _ |a FullTexts
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nn.2189
|2 Crossref
|o 10.1038/nn.2189
999 C 5 |9 -- missing cx lookup --
|a 10.3758/BF03193844
|2 Crossref
|o 10.3758/BF03193844
999 C 5 |9 -- missing cx lookup --
|a 10.1098/rstb.2013.0045
|2 Crossref
|o 10.1098/rstb.2013.0045
999 C 5 |9 -- missing cx lookup --
|a 10.1212/01.WNL.0000106948.17561.55
|2 Crossref
|o 10.1212/01.WNL.0000106948.17561.55
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S0896-6273(03)00393-3
|2 Crossref
|o 10.1016/S0896-6273(03)00393-3
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.bandc.2011.12.001
|2 Crossref
|o 10.1016/j.bandc.2011.12.001
999 C 5 |9 -- missing cx lookup --
|a 10.1007/s00429-016-1288-8
|2 Crossref
|o 10.1007/s00429-016-1288-8
999 C 5 |9 -- missing cx lookup --
|a 10.1162/jocn.2010.21461
|2 Crossref
|o 10.1162/jocn.2010.21461
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroscience.2005.09.018
|2 Crossref
|o 10.1016/j.neuroscience.2005.09.018
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.2146-07.2007
|2 Crossref
|o 10.1523/JNEUROSCI.2146-07.2007
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.1825-13.2013
|2 Crossref
|o 10.1523/JNEUROSCI.1825-13.2013
999 C 5 |9 -- missing cx lookup --
|a 10.1073/pnas.0805414105
|2 Crossref
|o 10.1073/pnas.0805414105
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuropsychologia.2014.04.017
|2 Crossref
|o 10.1016/j.neuropsychologia.2014.04.017
999 C 5 |9 -- missing cx lookup --
|a 10.1007/s00221-010-2293-4
|2 Crossref
|o 10.1007/s00221-010-2293-4
999 C 5 |9 -- missing cx lookup --
|a 10.1111/j.1460-9568.2008.06154.x
|2 Crossref
|o 10.1111/j.1460-9568.2008.06154.x
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuron.2004.12.033
|2 Crossref
|o 10.1016/j.neuron.2004.12.033
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neulet.2006.09.011
|2 Crossref
|o 10.1016/j.neulet.2006.09.011
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2011.10.094
|2 Crossref
|o 10.1016/j.neuroimage.2011.10.094
999 C 5 |9 -- missing cx lookup --
|a 10.1093/cercor/bhm203
|2 Crossref
|o 10.1093/cercor/bhm203
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.23-11-04689.2003
|2 Crossref
|o 10.1523/JNEUROSCI.23-11-04689.2003
999 C 5 |9 -- missing cx lookup --
|a 10.1007/s00221-003-1587-1
|2 Crossref
|o 10.1007/s00221-003-1587-1
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.cub.2012.11.060
|2 Crossref
|o 10.1016/j.cub.2012.11.060
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2007.01.033
|2 Crossref
|o 10.1016/j.neuroimage.2007.01.033
999 C 5 |9 -- missing cx lookup --
|a 10.1146/annurev.neuro.29.051605.112953
|2 Crossref
|o 10.1146/annurev.neuro.29.051605.112953
999 C 5 |9 -- missing cx lookup --
|a 10.1002/ar.1082
|2 Crossref
|o 10.1002/ar.1082
999 C 5 |9 -- missing cx lookup --
|a 10.1037/0278-7393.32.4.867
|2 Crossref
|o 10.1037/0278-7393.32.4.867
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41593-017-0039-3
|2 Crossref
|o 10.1038/s41593-017-0039-3
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.clinph.2009.08.016
|2 Crossref
|o 10.1016/j.clinph.2009.08.016
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.clinph.2015.02.001
|2 Crossref
|o 10.1016/j.clinph.2015.02.001
999 C 5 |9 -- missing cx lookup --
|a 10.1002/hipo.22011
|2 Crossref
|o 10.1002/hipo.22011
999 C 5 |9 -- missing cx lookup --
|a 10.1007/s00221-014-3848-6
|2 Crossref
|o 10.1007/s00221-014-3848-6
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2016.01.030
|2 Crossref
|o 10.1016/j.neuroimage.2016.01.030


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21