000140144 001__ 140144
000140144 005__ 20240321220743.0
000140144 0247_ $$2doi$$a10.1016/j.conb.2018.02.024
000140144 0247_ $$2pmid$$apmid:29544200
000140144 0247_ $$2ISSN$$a0959-4388
000140144 0247_ $$2ISSN$$a1873-6882
000140144 0247_ $$2altmetric$$aaltmetric:34407701
000140144 037__ $$aDZNE-2020-06466
000140144 041__ $$aEnglish
000140144 082__ $$a610
000140144 1001_ $$0P:(DE-2719)2812409$$aBlanquie, Oriane$$b0$$eFirst author$$udzne
000140144 245__ $$aCytoskeleton dynamics in axon regeneration.
000140144 260__ $$aPhiladelphia, Pa.$$bCurrent Biology$$c2018
000140144 264_1 $$2Crossref$$3print$$bElsevier BV$$c2018-08-01
000140144 3367_ $$2DRIVER$$aarticle
000140144 3367_ $$2DataCite$$aOutput Types/Journal article
000140144 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1685012325_32154$$xReview Article
000140144 3367_ $$2BibTeX$$aARTICLE
000140144 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000140144 3367_ $$00$$2EndNote$$aJournal Article
000140144 520__ $$aRecent years have seen cytoskeleton dynamics emerging as a key player in axon regeneration. The cytoskeleton, in particular microtubules and actin, ensures the growth of neuronal processes and maintains the singular, highly polarized shape of neurons. Following injury, adult central axons are tipped by a dystrophic structure, the retraction bulb, which prevents their regeneration. Abnormal cytoskeleton dynamics are responsible for the formation of this growth-incompetent structure but pharmacologically modulating cytoskeleton dynamics of injured axons can transform this structure into a growth-competent growth cone. The cytoskeleton also drives the migration of scar-forming cells after an injury. Targeting its dynamics modifies the composition of the inhibitory environment formed by scar tissue and renders it more permissive for regenerating axons. Hence, cytoskeleton dynamics represent an appealing target to promote axon regeneration. As some of cytoskeleton-targeting drugs are used in the clinics for other purposes, they hold the promise to be used as a basis for a regenerative therapy after a spinal cord injury.
000140144 536__ $$0G:(DE-HGF)POF3-341$$a341 - Molecular Signaling (POF3-341)$$cPOF3-341$$fPOF III$$x0
000140144 542__ $$2Crossref$$i2018-08-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000140144 542__ $$2Crossref$$i2018-03-01$$uhttp://creativecommons.org/licenses/by-nc-nd/4.0/
000140144 588__ $$aDataset connected to CrossRef, PubMed,
000140144 650_2 $$2MeSH$$aAnimals
000140144 650_2 $$2MeSH$$aAxons: metabolism
000140144 650_2 $$2MeSH$$aCell Movement
000140144 650_2 $$2MeSH$$aCicatrix: metabolism
000140144 650_2 $$2MeSH$$aCicatrix: pathology
000140144 650_2 $$2MeSH$$aCicatrix: physiopathology
000140144 650_2 $$2MeSH$$aCytoskeleton: metabolism
000140144 650_2 $$2MeSH$$aGrowth Cones: physiology
000140144 650_2 $$2MeSH$$aHumans
000140144 650_2 $$2MeSH$$aNerve Regeneration: physiology
000140144 7001_ $$0P:(DE-2719)2810270$$aBradke, Frank$$b1$$eLast author$$udzne
000140144 77318 $$2Crossref$$3journal-article$$a10.1016/j.conb.2018.02.024$$b : Elsevier BV, 2018-08-01$$p60-69$$tCurrent Opinion in Neurobiology$$v51$$x0959-4388$$y2018
000140144 773__ $$0PERI:(DE-600)2013035-1$$a10.1016/j.conb.2018.02.024$$gVol. 51, p. 60 - 69$$p60-69$$q51<60 - 69$$tCurrent opinion in neurobiology$$v51$$x0959-4388$$y2018
000140144 8564_ $$uhttps://pub.dzne.de/record/140144/files/DZNE-2020-06466.pdf$$yOpenAccess
000140144 8564_ $$uhttps://pub.dzne.de/record/140144/files/DZNE-2020-06466.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000140144 909CO $$ooai:pub.dzne.de:140144$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000140144 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812409$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000140144 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810270$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000140144 9131_ $$0G:(DE-HGF)POF3-341$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vMolecular Signaling$$x0
000140144 9141_ $$y2018
000140144 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000140144 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000140144 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-03-30$$wger
000140144 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCURR OPIN NEUROBIOL : 2021$$d2023-03-30
000140144 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-03-30
000140144 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-03-30
000140144 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-03-30
000140144 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-03-30
000140144 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-03-30
000140144 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-03-30
000140144 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-03-30
000140144 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-03-30
000140144 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-03-30
000140144 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2023-03-30
000140144 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCURR OPIN NEUROBIOL : 2021$$d2023-03-30
000140144 9201_ $$0I:(DE-2719)1013002$$kAG Bradke$$lAxon Growth and Regeneration$$x0
000140144 980__ $$ajournal
000140144 980__ $$aVDB
000140144 980__ $$aUNRESTRICTED
000140144 980__ $$aI:(DE-2719)1013002
000140144 9801_ $$aFullTexts