000140235 001__ 140235
000140235 005__ 20240321220754.0
000140235 0247_ $$2doi$$a10.1016/j.cels.2018.06.006
000140235 0247_ $$2pmid$$apmid:30145116
000140235 0247_ $$2pmc$$apmc:PMC6167251
000140235 0247_ $$2ISSN$$a2405-4712
000140235 0247_ $$2ISSN$$a2405-4720
000140235 0247_ $$2altmetric$$aaltmetric:46839575
000140235 037__ $$aDZNE-2020-06557
000140235 041__ $$aEnglish
000140235 082__ $$a570
000140235 1001_ $$0P:(DE-HGF)0$$aStanoev, Angel$$b0
000140235 245__ $$aInterdependence between EGFR and Phosphatases Spatially Established by Vesicular Dynamics Generates a Growth Factor Sensing and Responding Network.
000140235 260__ $$aMaryland Heights, MO$$bElsevier$$c2018
000140235 264_1 $$2Crossref$$3print$$bElsevier BV$$c2018-09-01
000140235 3367_ $$2DRIVER$$aarticle
000140235 3367_ $$2DataCite$$aOutput Types/Journal article
000140235 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710163351_27994
000140235 3367_ $$2BibTeX$$aARTICLE
000140235 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000140235 3367_ $$00$$2EndNote$$aJournal Article
000140235 520__ $$aThe proto-oncogenic epidermal growth factor receptor (EGFR) is a tyrosine kinase whose sensitivity to growth factors and signal duration determines cellular behavior. We resolve how EGFR's response to epidermal growth factor (EGF) originates from dynamically established recursive interactions with spatially organized protein tyrosine phosphatases (PTPs). Reciprocal genetic PTP perturbations enabled identification of receptor-like PTPRG/J at the plasma membrane and ER-associated PTPN2 as the major EGFR dephosphorylating activities. Imaging spatial-temporal PTP reactivity revealed that vesicular trafficking establishes a spatially distributed negative feedback with PTPN2 that determines signal duration. On the other hand, single-cell dose-response analysis uncovered a reactive oxygen species-mediated toggle switch between autocatalytically activated monomeric EGFR and the tumor suppressor PTPRG that governs EGFR's sensitivity to EGF. Vesicular recycling of monomeric EGFR unifies the interactions with these PTPs on distinct membrane systems, dynamically generating a network architecture that can sense and respond to time-varying growth factor signals.
000140235 536__ $$0G:(DE-HGF)POF3-342$$a342 - Disease Mechanisms and Model Systems (POF3-342)$$cPOF3-342$$fPOF III$$x0
000140235 542__ $$2Crossref$$i2018-09-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000140235 542__ $$2Crossref$$i2018-06-11$$uhttp://creativecommons.org/licenses/by/4.0/
000140235 588__ $$aDataset connected to CrossRef, PubMed,
000140235 650_7 $$2NLM Chemicals$$aRNA, Small Interfering
000140235 650_7 $$2NLM Chemicals$$aReactive Oxygen Species
000140235 650_7 $$062229-50-9$$2NLM Chemicals$$aEpidermal Growth Factor
000140235 650_7 $$0EC 2.7.10.1$$2NLM Chemicals$$aEGFR protein, human
000140235 650_7 $$0EC 2.7.10.1$$2NLM Chemicals$$aErbB Receptors
000140235 650_7 $$0EC 3.1.3.48$$2NLM Chemicals$$aPTPN2 protein, human
000140235 650_7 $$0EC 3.1.3.48$$2NLM Chemicals$$aProtein Tyrosine Phosphatase, Non-Receptor Type 2
000140235 650_7 $$0EC 3.1.3.48$$2NLM Chemicals$$aReceptor-Like Protein Tyrosine Phosphatases, Class 5
000140235 650_2 $$2MeSH$$aCell Membrane: metabolism
000140235 650_2 $$2MeSH$$aComputational Biology
000140235 650_2 $$2MeSH$$aCytoplasmic Vesicles: metabolism
000140235 650_2 $$2MeSH$$aEndoplasmic Reticulum: metabolism
000140235 650_2 $$2MeSH$$aEpidermal Growth Factor: metabolism
000140235 650_2 $$2MeSH$$aErbB Receptors: metabolism
000140235 650_2 $$2MeSH$$aFeedback, Physiological
000140235 650_2 $$2MeSH$$aHumans
000140235 650_2 $$2MeSH$$aMCF-7 Cells
000140235 650_2 $$2MeSH$$aMicroscopy, Confocal
000140235 650_2 $$2MeSH$$aModels, Theoretical
000140235 650_2 $$2MeSH$$aPhosphorylation
000140235 650_2 $$2MeSH$$aProtein Interaction Maps
000140235 650_2 $$2MeSH$$aProtein Transport
000140235 650_2 $$2MeSH$$aProtein Tyrosine Phosphatase, Non-Receptor Type 2: metabolism
000140235 650_2 $$2MeSH$$aRNA, Small Interfering: genetics
000140235 650_2 $$2MeSH$$aReactive Oxygen Species: metabolism
000140235 650_2 $$2MeSH$$aReceptor-Like Protein Tyrosine Phosphatases, Class 5: genetics
000140235 650_2 $$2MeSH$$aReceptor-Like Protein Tyrosine Phosphatases, Class 5: metabolism
000140235 650_2 $$2MeSH$$aSignal Transduction
000140235 650_2 $$2MeSH$$aSingle-Cell Analysis
000140235 7001_ $$0P:(DE-HGF)0$$aMhamane, Amit$$b1
000140235 7001_ $$0P:(DE-HGF)0$$aSchuermann, Klaus C$$b2
000140235 7001_ $$0P:(DE-HGF)0$$aGrecco, Hernán E$$b3
000140235 7001_ $$0P:(DE-HGF)0$$aStallaert, Wayne$$b4
000140235 7001_ $$0P:(DE-HGF)0$$aBaumdick, Martin$$b5
000140235 7001_ $$0P:(DE-HGF)0$$aBrüggemann, Yannick$$b6
000140235 7001_ $$0P:(DE-HGF)0$$aJoshi, Maitreyi S$$b7
000140235 7001_ $$0P:(DE-HGF)0$$aRoda-Navarro, Pedro$$b8
000140235 7001_ $$0P:(DE-2719)2812244$$aFengler, Sven$$b9$$udzne
000140235 7001_ $$0P:(DE-HGF)0$$aStockert, Rabea$$b10
000140235 7001_ $$0P:(DE-HGF)0$$aRoßmannek, Lisaweta$$b11
000140235 7001_ $$0P:(DE-HGF)0$$aLuig, Jutta$$b12
000140235 7001_ $$0P:(DE-HGF)0$$aKoseska, Aneta$$b13
000140235 7001_ $$0P:(DE-HGF)0$$aBastiaens, Philippe I H$$b14$$eCorresponding author
000140235 77318 $$2Crossref$$3journal-article$$a10.1016/j.cels.2018.06.006$$b : Elsevier BV, 2018-09-01$$n3$$p295-309.e11$$tCell Systems$$v7$$x2405-4712$$y2018
000140235 773__ $$0PERI:(DE-600)2854138-8$$a10.1016/j.cels.2018.06.006$$gVol. 7, no. 3, p. 295 - 309.e11$$n3$$p295-309.e11$$q7:3<295 - 309.e11$$tCell systems$$v7$$x2405-4712$$y2018
000140235 8564_ $$uhttps://pub.dzne.de/record/140235/files/DZNE-2020-06557.pdf$$yOpenAccess
000140235 8564_ $$uhttps://pub.dzne.de/record/140235/files/DZNE-2020-06557.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000140235 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167251
000140235 909CO $$ooai:pub.dzne.de:140235$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000140235 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812244$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000140235 9131_ $$0G:(DE-HGF)POF3-342$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vDisease Mechanisms and Model Systems$$x0
000140235 9141_ $$y2018
000140235 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-08
000140235 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-08
000140235 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000140235 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL SYST : 2021$$d2022-11-08
000140235 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-08
000140235 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bCELL SYST : 2021$$d2022-11-08
000140235 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000140235 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-08
000140235 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-08
000140235 9201_ $$0I:(DE-2719)1013016$$kAG Fava 1$$lSystems Phenomics$$x0
000140235 980__ $$ajournal
000140235 980__ $$aVDB
000140235 980__ $$aUNRESTRICTED
000140235 980__ $$aI:(DE-2719)1013016
000140235 9801_ $$aFullTexts