001     140235
005     20240321220754.0
024 7 _ |a 10.1016/j.cels.2018.06.006
|2 doi
024 7 _ |a pmid:30145116
|2 pmid
024 7 _ |a pmc:PMC6167251
|2 pmc
024 7 _ |a 2405-4712
|2 ISSN
024 7 _ |a 2405-4720
|2 ISSN
024 7 _ |a altmetric:46839575
|2 altmetric
037 _ _ |a DZNE-2020-06557
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Stanoev, Angel
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Interdependence between EGFR and Phosphatases Spatially Established by Vesicular Dynamics Generates a Growth Factor Sensing and Responding Network.
260 _ _ |a Maryland Heights, MO
|c 2018
|b Elsevier
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2018-09-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710163351_27994
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The proto-oncogenic epidermal growth factor receptor (EGFR) is a tyrosine kinase whose sensitivity to growth factors and signal duration determines cellular behavior. We resolve how EGFR's response to epidermal growth factor (EGF) originates from dynamically established recursive interactions with spatially organized protein tyrosine phosphatases (PTPs). Reciprocal genetic PTP perturbations enabled identification of receptor-like PTPRG/J at the plasma membrane and ER-associated PTPN2 as the major EGFR dephosphorylating activities. Imaging spatial-temporal PTP reactivity revealed that vesicular trafficking establishes a spatially distributed negative feedback with PTPN2 that determines signal duration. On the other hand, single-cell dose-response analysis uncovered a reactive oxygen species-mediated toggle switch between autocatalytically activated monomeric EGFR and the tumor suppressor PTPRG that governs EGFR's sensitivity to EGF. Vesicular recycling of monomeric EGFR unifies the interactions with these PTPs on distinct membrane systems, dynamically generating a network architecture that can sense and respond to time-varying growth factor signals.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
542 _ _ |i 2018-09-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2018-06-11
|2 Crossref
|u http://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a RNA, Small Interfering
|2 NLM Chemicals
650 _ 7 |a Reactive Oxygen Species
|2 NLM Chemicals
650 _ 7 |a Epidermal Growth Factor
|0 62229-50-9
|2 NLM Chemicals
650 _ 7 |a EGFR protein, human
|0 EC 2.7.10.1
|2 NLM Chemicals
650 _ 7 |a ErbB Receptors
|0 EC 2.7.10.1
|2 NLM Chemicals
650 _ 7 |a PTPN2 protein, human
|0 EC 3.1.3.48
|2 NLM Chemicals
650 _ 7 |a Protein Tyrosine Phosphatase, Non-Receptor Type 2
|0 EC 3.1.3.48
|2 NLM Chemicals
650 _ 7 |a Receptor-Like Protein Tyrosine Phosphatases, Class 5
|0 EC 3.1.3.48
|2 NLM Chemicals
650 _ 2 |a Cell Membrane: metabolism
|2 MeSH
650 _ 2 |a Computational Biology
|2 MeSH
650 _ 2 |a Cytoplasmic Vesicles: metabolism
|2 MeSH
650 _ 2 |a Endoplasmic Reticulum: metabolism
|2 MeSH
650 _ 2 |a Epidermal Growth Factor: metabolism
|2 MeSH
650 _ 2 |a ErbB Receptors: metabolism
|2 MeSH
650 _ 2 |a Feedback, Physiological
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a MCF-7 Cells
|2 MeSH
650 _ 2 |a Microscopy, Confocal
|2 MeSH
650 _ 2 |a Models, Theoretical
|2 MeSH
650 _ 2 |a Phosphorylation
|2 MeSH
650 _ 2 |a Protein Interaction Maps
|2 MeSH
650 _ 2 |a Protein Transport
|2 MeSH
650 _ 2 |a Protein Tyrosine Phosphatase, Non-Receptor Type 2: metabolism
|2 MeSH
650 _ 2 |a RNA, Small Interfering: genetics
|2 MeSH
650 _ 2 |a Reactive Oxygen Species: metabolism
|2 MeSH
650 _ 2 |a Receptor-Like Protein Tyrosine Phosphatases, Class 5: genetics
|2 MeSH
650 _ 2 |a Receptor-Like Protein Tyrosine Phosphatases, Class 5: metabolism
|2 MeSH
650 _ 2 |a Signal Transduction
|2 MeSH
650 _ 2 |a Single-Cell Analysis
|2 MeSH
700 1 _ |a Mhamane, Amit
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schuermann, Klaus C
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Grecco, Hernán E
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Stallaert, Wayne
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Baumdick, Martin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Brüggemann, Yannick
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Joshi, Maitreyi S
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Roda-Navarro, Pedro
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Fengler, Sven
|0 P:(DE-2719)2812244
|b 9
|u dzne
700 1 _ |a Stockert, Rabea
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Roßmannek, Lisaweta
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Luig, Jutta
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Koseska, Aneta
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Bastiaens, Philippe I H
|0 P:(DE-HGF)0
|b 14
|e Corresponding author
773 1 8 |a 10.1016/j.cels.2018.06.006
|b : Elsevier BV, 2018-09-01
|n 3
|p 295-309.e11
|3 journal-article
|2 Crossref
|t Cell Systems
|v 7
|y 2018
|x 2405-4712
773 _ _ |a 10.1016/j.cels.2018.06.006
|g Vol. 7, no. 3, p. 295 - 309.e11
|0 PERI:(DE-600)2854138-8
|n 3
|q 7:3<295 - 309.e11
|p 295-309.e11
|t Cell systems
|v 7
|y 2018
|x 2405-4712
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/140235/files/DZNE-2020-06557.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/140235/files/DZNE-2020-06557.pdf?subformat=pdfa
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167251
909 C O |o oai:pub.dzne.de:140235
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2812244
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms and Model Systems
|x 0
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-08
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL SYST : 2021
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-08
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b CELL SYST : 2021
|d 2022-11-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-08
920 1 _ |0 I:(DE-2719)1013016
|k AG Fava 1
|l Systems Phenomics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013016
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21