000140254 001__ 140254
000140254 005__ 20240321220756.0
000140254 0247_ $$2doi$$a10.1016/j.bbr.2018.07.023
000140254 0247_ $$2pmid$$apmid:30098839
000140254 0247_ $$2ISSN$$a0166-4328
000140254 0247_ $$2ISSN$$a1872-7549
000140254 037__ $$aDZNE-2020-06576
000140254 041__ $$aEnglish
000140254 082__ $$a610
000140254 1001_ $$aFlasbeck, Vera$$b0
000140254 245__ $$aSpatial information is preferentially processed by the distal part of CA3: Implication for memory retrieval.
000140254 260__ $$aAmsterdam$$bElsevier$$c2018
000140254 264_1 $$2Crossref$$3print$$bElsevier BV$$c2018-11-01
000140254 3367_ $$2DRIVER$$aarticle
000140254 3367_ $$2DataCite$$aOutput Types/Journal article
000140254 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710161667_27991
000140254 3367_ $$2BibTeX$$aARTICLE
000140254 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000140254 3367_ $$00$$2EndNote$$aJournal Article
000140254 520__ $$aFor the past decades, CA3 was considered as a single functional entity. However, strong differences between the proximal (close to the dentate gyrus) and the distal (close to CA2) parts of CA3 in terms of connectivity patterns, gene expression and electrophysiological properties suggest that it is not the case. We recently showed that proximal CA3 (together with distal CA1) preferentially deals with non-spatial information [1]. In contrast to proximal CA3, distal CA3 mainly receives and predominantly projects to spatially tuned areas. Here, we tested if distal CA3 preferentially processes spatial information, which would suggest a segregation of the spatial information along the proximodistal axis of CA3. We used a high-resolution imaging technique based on the detection of the expression of the immediate-early gene Arc, commonly used to map activity in the medial temporal lobe. We showed that distal CA3 is strongly recruited in a newly designed delayed nonmatching-to-location task with high memory demands in rats, while proximal CA3 is not. These results indicate a functional segregation of CA3 that mirrors the one reported in CA1, and suggest the existence of a distal CA3- proximal CA1 spatial subnetwork. These findings bring further evidence for the existence of 'specialized' spatial and non-spatial subnetworks segregated along the proximodistal axis of the hippocampus and put forward the 'segregated' view of information processing in the hippocampus as a reasonable alternative to the well-accepted 'integrated' view, according to which spatial and non-spatial information are systematically integrated in the hippocampus to form episodic memory.
000140254 536__ $$0G:(DE-HGF)POF3-342$$a342 - Disease Mechanisms and Model Systems (POF3-342)$$cPOF3-342$$fPOF III$$x0
000140254 542__ $$2Crossref$$i2018-11-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000140254 588__ $$aDataset connected to CrossRef, PubMed,
000140254 650_7 $$2NLM Chemicals$$aCytoskeletal Proteins
000140254 650_7 $$2NLM Chemicals$$aNerve Tissue Proteins
000140254 650_7 $$2NLM Chemicals$$aactivity regulated cytoskeletal-associated protein
000140254 650_2 $$2MeSH$$aAnimals
000140254 650_2 $$2MeSH$$aBehavior, Animal
000140254 650_2 $$2MeSH$$aCA3 Region, Hippocampal: physiology
000140254 650_2 $$2MeSH$$aChoice Behavior
000140254 650_2 $$2MeSH$$aCytoskeletal Proteins: metabolism
000140254 650_2 $$2MeSH$$aMale
000140254 650_2 $$2MeSH$$aMaze Learning
000140254 650_2 $$2MeSH$$aMental Recall: physiology
000140254 650_2 $$2MeSH$$aNerve Tissue Proteins: metabolism
000140254 650_2 $$2MeSH$$aRats, Long-Evans
000140254 650_2 $$2MeSH$$aSpatial Memory: physiology
000140254 650_2 $$2MeSH$$aSpatial Processing
000140254 7001_ $$aAtucha, Erika$$b1
000140254 7001_ $$aNakamura, Nozomu H$$b2
000140254 7001_ $$0P:(DE-2719)2811873$$aYoshida, Motoharu$$b3$$udzne
000140254 7001_ $$0P:(DE-HGF)0$$aSauvage, Magdalena M$$b4$$eCorresponding author
000140254 77318 $$2Crossref$$3journal-article$$a10.1016/j.bbr.2018.07.023$$b : Elsevier BV, 2018-11-01$$p31-38$$tBehavioural Brain Research$$v354$$x0166-4328$$y2018
000140254 773__ $$0PERI:(DE-600)2013604-3$$a10.1016/j.bbr.2018.07.023$$gVol. 354, p. 31 - 38$$p31-38$$q354<31 - 38$$tBehavioural brain research$$v354$$x0166-4328$$y2018
000140254 8564_ $$uhttps://pub.dzne.de/record/140254/files/DZNE-2020-06576_Restricted.pdf
000140254 8564_ $$uhttps://pub.dzne.de/record/140254/files/DZNE-2020-06576_Restricted.pdf?subformat=pdfa$$xpdfa
000140254 909CO $$ooai:pub.dzne.de:140254$$pVDB
000140254 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811873$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000140254 9131_ $$0G:(DE-HGF)POF3-342$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vDisease Mechanisms and Model Systems$$x0
000140254 9141_ $$y2018
000140254 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-17$$wger
000140254 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBEHAV BRAIN RES : 2021$$d2022-11-17
000140254 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000140254 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000140254 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-17
000140254 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-17
000140254 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000140254 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000140254 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-17
000140254 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-17
000140254 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-17
000140254 9201_ $$0I:(DE-2719)1310011$$kAG Yoshida$$lCognitive Neurophysiology$$x0
000140254 980__ $$ajournal
000140254 980__ $$aVDB
000140254 980__ $$aI:(DE-2719)1310011
000140254 980__ $$aUNRESTRICTED