001     140254
005     20240321220756.0
024 7 _ |a 10.1016/j.bbr.2018.07.023
|2 doi
024 7 _ |a pmid:30098839
|2 pmid
024 7 _ |a 0166-4328
|2 ISSN
024 7 _ |a 1872-7549
|2 ISSN
037 _ _ |a DZNE-2020-06576
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Flasbeck, Vera
|b 0
245 _ _ |a Spatial information is preferentially processed by the distal part of CA3: Implication for memory retrieval.
260 _ _ |a Amsterdam
|c 2018
|b Elsevier
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2018-11-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710161667_27991
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For the past decades, CA3 was considered as a single functional entity. However, strong differences between the proximal (close to the dentate gyrus) and the distal (close to CA2) parts of CA3 in terms of connectivity patterns, gene expression and electrophysiological properties suggest that it is not the case. We recently showed that proximal CA3 (together with distal CA1) preferentially deals with non-spatial information [1]. In contrast to proximal CA3, distal CA3 mainly receives and predominantly projects to spatially tuned areas. Here, we tested if distal CA3 preferentially processes spatial information, which would suggest a segregation of the spatial information along the proximodistal axis of CA3. We used a high-resolution imaging technique based on the detection of the expression of the immediate-early gene Arc, commonly used to map activity in the medial temporal lobe. We showed that distal CA3 is strongly recruited in a newly designed delayed nonmatching-to-location task with high memory demands in rats, while proximal CA3 is not. These results indicate a functional segregation of CA3 that mirrors the one reported in CA1, and suggest the existence of a distal CA3- proximal CA1 spatial subnetwork. These findings bring further evidence for the existence of 'specialized' spatial and non-spatial subnetworks segregated along the proximodistal axis of the hippocampus and put forward the 'segregated' view of information processing in the hippocampus as a reasonable alternative to the well-accepted 'integrated' view, according to which spatial and non-spatial information are systematically integrated in the hippocampus to form episodic memory.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
542 _ _ |i 2018-11-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Cytoskeletal Proteins
|2 NLM Chemicals
650 _ 7 |a Nerve Tissue Proteins
|2 NLM Chemicals
650 _ 7 |a activity regulated cytoskeletal-associated protein
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Behavior, Animal
|2 MeSH
650 _ 2 |a CA3 Region, Hippocampal: physiology
|2 MeSH
650 _ 2 |a Choice Behavior
|2 MeSH
650 _ 2 |a Cytoskeletal Proteins: metabolism
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Maze Learning
|2 MeSH
650 _ 2 |a Mental Recall: physiology
|2 MeSH
650 _ 2 |a Nerve Tissue Proteins: metabolism
|2 MeSH
650 _ 2 |a Rats, Long-Evans
|2 MeSH
650 _ 2 |a Spatial Memory: physiology
|2 MeSH
650 _ 2 |a Spatial Processing
|2 MeSH
700 1 _ |a Atucha, Erika
|b 1
700 1 _ |a Nakamura, Nozomu H
|b 2
700 1 _ |a Yoshida, Motoharu
|0 P:(DE-2719)2811873
|b 3
|u dzne
700 1 _ |a Sauvage, Magdalena M
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 1 8 |a 10.1016/j.bbr.2018.07.023
|b : Elsevier BV, 2018-11-01
|p 31-38
|3 journal-article
|2 Crossref
|t Behavioural Brain Research
|v 354
|y 2018
|x 0166-4328
773 _ _ |a 10.1016/j.bbr.2018.07.023
|g Vol. 354, p. 31 - 38
|0 PERI:(DE-600)2013604-3
|q 354<31 - 38
|p 31-38
|t Behavioural brain research
|v 354
|y 2018
|x 0166-4328
856 4 _ |u https://pub.dzne.de/record/140254/files/DZNE-2020-06576_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/140254/files/DZNE-2020-06576_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:140254
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2811873
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms and Model Systems
|x 0
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-17
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BEHAV BRAIN RES : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-17
920 1 _ |0 I:(DE-2719)1310011
|k AG Yoshida
|l Cognitive Neurophysiology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1310011
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21