000140255 001__ 140255
000140255 005__ 20240321220756.0
000140255 0247_ $$2doi$$a10.1016/j.bbr.2018.02.042
000140255 0247_ $$2pmid$$apmid:29501506
000140255 0247_ $$2ISSN$$a0166-4328
000140255 0247_ $$2ISSN$$a1872-7549
000140255 0247_ $$2altmetric$$aaltmetric:70357702
000140255 037__ $$aDZNE-2020-06577
000140255 041__ $$aEnglish
000140255 082__ $$a610
000140255 1001_ $$0P:(DE-2719)2813728$$aReboreda, Antonio$$b0$$eFirst author$$udzne
000140255 245__ $$aDo TRPC channels support working memory? Comparing modulations of TRPC channels and working memory through G-protein coupled receptors and neuromodulators.
000140255 260__ $$aAmsterdam$$bElsevier$$c2018
000140255 264_1 $$2Crossref$$3print$$bElsevier BV$$c2018-11-01
000140255 3367_ $$2DRIVER$$aarticle
000140255 3367_ $$2DataCite$$aOutput Types/Journal article
000140255 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710161271_27995$$xReview Article
000140255 3367_ $$2BibTeX$$aARTICLE
000140255 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000140255 3367_ $$00$$2EndNote$$aJournal Article
000140255 520__ $$aWorking memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future.
000140255 536__ $$0G:(DE-HGF)POF3-342$$a342 - Disease Mechanisms and Model Systems (POF3-342)$$cPOF3-342$$fPOF III$$x0
000140255 536__ $$0G:(DE-HGF)POF3-344$$a344 - Clinical and Health Care Research (POF3-344)$$cPOF3-344$$fPOF III$$x1
000140255 542__ $$2Crossref$$i2018-11-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000140255 588__ $$aDataset connected to CrossRef, PubMed,
000140255 650_7 $$2NLM Chemicals$$aReceptors, G-Protein-Coupled
000140255 650_7 $$2NLM Chemicals$$aTRPC Cation Channels
000140255 650_7 $$0333DO1RDJY$$2NLM Chemicals$$aSerotonin
000140255 650_7 $$0N9YNS0M02X$$2NLM Chemicals$$aAcetylcholine
000140255 650_7 $$0VTD58H1Z2X$$2NLM Chemicals$$aDopamine
000140255 650_7 $$0X4W3ENH1CV$$2NLM Chemicals$$aNorepinephrine
000140255 650_2 $$2MeSH$$aAcetylcholine: physiology
000140255 650_2 $$2MeSH$$aAction Potentials
000140255 650_2 $$2MeSH$$aAnimals
000140255 650_2 $$2MeSH$$aConditioning, Psychological
000140255 650_2 $$2MeSH$$aDopamine: physiology
000140255 650_2 $$2MeSH$$aHippocampus: physiology
000140255 650_2 $$2MeSH$$aHumans
000140255 650_2 $$2MeSH$$aMemory, Short-Term: physiology
000140255 650_2 $$2MeSH$$aNeurons: physiology
000140255 650_2 $$2MeSH$$aNorepinephrine: physiology
000140255 650_2 $$2MeSH$$aReceptors, G-Protein-Coupled: physiology
000140255 650_2 $$2MeSH$$aSerotonin: physiology
000140255 650_2 $$2MeSH$$aTRPC Cation Channels: physiology
000140255 7001_ $$0P:(DE-2719)2811872$$aTheissen, Frederik M$$b1$$udzne
000140255 7001_ $$0P:(DE-HGF)0$$aValero-Aracama, Maria J$$b2
000140255 7001_ $$0P:(DE-2719)2811871$$aArboit, Alberto$$b3$$udzne
000140255 7001_ $$0P:(DE-HGF)0$$aCorbu, Mihaela A$$b4
000140255 7001_ $$0P:(DE-2719)2811873$$aYoshida, Motoharu$$b5$$eLast author$$udzne
000140255 77318 $$2Crossref$$3journal-article$$a10.1016/j.bbr.2018.02.042$$b : Elsevier BV, 2018-11-01$$p64-83$$tBehavioural Brain Research$$v354$$x0166-4328$$y2018
000140255 773__ $$0PERI:(DE-600)2013604-3$$a10.1016/j.bbr.2018.02.042$$gVol. 354, p. 64 - 83$$p64-83$$q354<64 - 83$$tBehavioural brain research$$v354$$x0166-4328$$y2018
000140255 8564_ $$uhttps://pub.dzne.de/record/140255/files/DZNE-2020-06577_Restricted.pdf
000140255 8564_ $$uhttps://pub.dzne.de/record/140255/files/DZNE-2020-06577_Restricted.pdf?subformat=pdfa$$xpdfa
000140255 909CO $$ooai:pub.dzne.de:140255$$pVDB
000140255 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2813728$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000140255 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811872$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000140255 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811871$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000140255 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811873$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000140255 9131_ $$0G:(DE-HGF)POF3-342$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vDisease Mechanisms and Model Systems$$x0
000140255 9131_ $$0G:(DE-HGF)POF3-344$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vClinical and Health Care Research$$x1
000140255 9141_ $$y2018
000140255 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-17$$wger
000140255 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBEHAV BRAIN RES : 2021$$d2022-11-17
000140255 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000140255 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000140255 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-17
000140255 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-17
000140255 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000140255 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000140255 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-17
000140255 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-17
000140255 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-17
000140255 9201_ $$0I:(DE-2719)1310011$$kAG Yoshida$$lCognitive Neurophysiology$$x0
000140255 9201_ $$0I:(DE-2719)1310004$$kAG Angenstein$$lFunctional Neuroimaging$$x1
000140255 980__ $$ajournal
000140255 980__ $$aVDB
000140255 980__ $$aI:(DE-2719)1310011
000140255 980__ $$aI:(DE-2719)1310004
000140255 980__ $$aUNRESTRICTED